Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019

Supporting Information

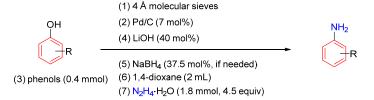
Direct Conversion of Phenols into Primary Anilines with Hydrazine Catalyzed by Palladium

Zihang Qiu,^a Leiyang Lv,^a Jianbin Li,^a Chen-Chen Li^a and Chao-Jun Li^a

Contents

I. General Experimental Information	3
II. Experimental Procedure	4
III. Optimization of the Reaction Conditions	5
IV. Synthesis of Starting Materials	10
V. Spectroscopic Data of Synthesized Starting Materials	11
VI. Spectroscopic Data of Products	15
VII. References	29
VIII. NMR Spectra of Products	30

I. General Experimental Information


All reactions were carried out under an atmosphere of argon, unless otherwise stated. All reported reaction temperatures corresponded to oil bath temperatures. Solvents and reagents were purchased from Sigma-Aldrich chemical company and Fisher Scientific and were used without further purification unless otherwise specified. 1,4-Dioxane and toluene were purified by the *Pure Solvent MD-7* purification system (Innovative Technology). Pentane was distilled under atmosphere pressure prior to use. 4 Å molecular sieves were purchased from Sigma-Aldrich chemical company and were freshly activated in the oven for 12 h at 380 °C prior to use. HCO₂Na (sodium formate) was purchased from Merck chemical company. Product purifications were performed either with preparative chromatography on a Biotage Isolera One automated chromatography system on silica gel or with preparative analytical thin-layer chromatography (TLC) using E. Merck silica gel 60 F₂₅₄ pre-coated plates (0.25 mm).

NMR Spectroscopy: Nuclear magnetic resonance (1 H, 13 C, 19 F) spectra were recorded on a Bruker AV500 equipped with a 60-position Sample Xpress sample changer (1 H, 500 MHz; 13 C, 125 MHz). Chemical shifts are expressed in parts per million (ppm) units downfield from TMS, with the solvent residue peak as the chemical shift standard (CDCl₃: δ 7.26 ppm in 1 H NMR, δ 77.16 ppm in 13 C NMR; DMSO-d₆ δ 2.50 ppm in 1 H NMR, δ 39.52 ppm in 13 C NMR; acetone-d₆ δ 2.04 ppm in 1 H NMR, δ 206.3 ppm in 13 C NMR). Data are reported as following: chemical shift, multiplicity (s = singlet, d = doublet, dd = doublet of doublets, t = triplet, td = triplet of doublets, q = quartet, quint = quintet, sext = sextet, sept = septet, m = multiplet, br = broad singlet), coupling constants J (Hz), and integration.

Mass Spectrometry: EI-MS was obtained from the Agilent GC-MS system. High Resolution Mass (HRMS) spectra was performed by the McGill Chemistry Department Mass Spectrometry Facility and was recorded using electrospray ionization (ESI+) and/or atmospheric pressure chemical ionization APCI(+/-), performed either on "Exactive Plus Orbitrap" a ThermoScientific high resolution accurate mass (HR/AM) FT mass spectrometer, or a Bruker Daltonics Maxis Impact quadrupole-time of flight (QTOF) mass spectrometer. Protonated molecular ions (M+H)+, (M-H)- or sodium adducts (M+Na)+, were used for empirical formula confirmation.

Caution: hydrazine monohydrate is potentially hazardous, and pressure can be built up at high temperature. Therefore appropriate personal protections should be performed running this transformation.

II. Experimental Procedure

General procedures: Freshly activated 4 Å molecular sieves (100 mg 4 Å molecular sieves per 0.3 mmol N₂H₄•H₂O) was added into a flame-dried 15 mL SynthwareTM cylindrical heavy wall pressure vessel, charged with a magnetic stir bar; followed by the addition of Pd/C (5 wt%, 7 mol%, 59.6 mg). The vessel was then vacuumed, stirred and heated in an oil-bath at 140 °C for 1 h to pre-activate the Pd/C. Next, phenols (0.4 mmol, 1 equiv) and LiOH (0.16 mmol, 40 mol%, 3.8 mg) (NaBH₄ (0.15 mmol, 37.5 mol%, 5.7 mg), if needed) were added into the vessel under argon protection. After three cycles of evacuation/backfilling sequence with argon, 1,4-dioxane (2.0 mL) and N₂H₄•H₂O (1.8 mmol, 4.5 equiv, 87.3 μL) were added. Then the vessel was sealed, allowed to stir at room temperature for 20 mins and then stirred at 170 °C in the pre-heated oil bath at 750 rpm for 16 h. After completion, the reaction mixture was diluted with EtOAc or MeOH and filtered through a pad of celite. The filtrate was then concentrated *in vacuo*, and the resulting residue was purified by column chromatography on silica gel or preparative TLC (EtOAc/hexanes, DCM/MeOH, *etc.*) to afford the corresponding products.

III. Optimization of the Reaction Conditions

Table S1. Evaluation of molecular sieves[a]

entry	molecular sieve type	molecular sieve amount	conv. (%)		yield (%)	
	,,	(mg)	()	3a	`4	5
1	-	-	100	10	46	1
2	4 Å	50	100	48	25	3
3	4 Å	75	100	46	26	5
4	4 Å	100	100	58	8	2
5	4 Å	150	100	57	11	3
6	4 Å	300	96	53	10	2
7	3 Å	100	100	44	22	4
8	5 Å	100	58	24	4	6

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N_2H_4 : H_2O (0.3 mmol, 1.5 equiv), 10 mol% of 5 wt% Pd/C with NaBH₄ (50 mol%) in 1,4-dixoane (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol.

Table S2. Evaluation of solvents[a]

entry	various solvents (1 mL)	conv. (%)		yield (%)	
	,	` ,	3a	`4	5
1	1,4-dioxane	100	58	8	2
2	heptane	99	35	15	11
3	<i>m</i> -xylene	78	24	6	1<
4	toluene	81	43	8	1<
5	trihexyltetradecylphosphonium dicyanamide (Ionic liquid)	-	-	-	-
6	diglyme	-	-	-	-
7	NMP	70	15	1<	1<
8	CPME	100	30	30	10

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N₂H₄·H₂O (0.3 mmol, 1.5 equiv), 10 mol% of 5 wt% Pd/C, NaBH₄ (50 mol%) with 100 mg 4 Å molecular sieve in various solvents above (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol.

Table S3. Evaluation of catalysts^[a]

entry	catalyst (10 mol%)	conv. (%)	yield (%)		
	,	` ,	3a	4	5
1	Pd/C (5 wt%)	100	58	8	2
2	Pd/C (10 wt%)	100	52	22	5
3	Pd/Al ₂ O ₃ (5 wt%)	100	42	<1	<1
4	Ru/C (5 wt%)	-	-	-	-

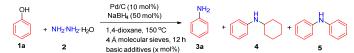

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N_2H_4 · H_2O (0.3 mmol, 1.5 equiv), 10 mol% catalyst, NaBH₄ (50 mol%), 100 mg 4 Å molecular sieve with additives in 1,4-dixoane (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol.

Table S4. Evaluation of acid additives[a]

entry	acid additives (x mol%)			yield (%)	
	,	()	3a	`4	5
1	-	100	58	8	2
2	NiCl ₂ (10)	87	27	46	5
3	$ZnF_{2}(10)$	100	30	36	11
4	ZnCl ₂ (10)	55	10	4	1<
5	CuCl (10)	97	27	36	14
6	In(OAc) ₃ (10)	100	21	48	9
7	MnCl ₂ (10)	100	47	22	8
8	$Al_2O_3(10)$	100	51	17	3
9	SnCl ₂ (10)	-	-	-	-
10	B ₂ (OH) ₄ (10)	100	51	17	4
11	B(OH) ₃ (10)	100	34	34	11
12	HCO ₂ H (10)	100	36	40	8
13	HOAc (10)	81	41	12	3
14	TFA (10)	100	52	15	3
15 ^b	CO ₂	87	13	46	14

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N_2H_4 · H_2O (0.3 mmol, 1.5 equiv), 10 mol% of 5 wt% Pd/C, NaBH₄ (50 mol%), 100 mg 4 Å molecular sieve with additives in 1,4-dixoane (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol; [b] The reaction was run under the atmosphere of sealed CO_2 instead of Argon.

Table S5. Evaluation of base additives[a]

entry	basic additives (x mol%)	conv. (%)		yield (%)	
	(1.1.1.7.7)	(70)	3a	4	5
1	-	100	58	8	2
2	LiO ^t Bu (10)	100	58	7	1
3	NaO ^t Bu (10)	100	59	6	1
4	NaO ^t Bu (20)	100	55	3	1<
5	KO ^t Bu (10)	100	59	10	2
6	CaO (10)	100	60	8	1<
7	CaO (20)	100	53	7	1<
8	NaOAc (20)	100	50	6	1<
9	Na ₂ CO ₃ (10)	100	55	16	4
10	K ₂ CO ₃ (10)	100	51	21	4
11	Cs ₂ CO ₃ (10)	100	54	17	2
12	Mg(OH) ₂ (10)	100	54	14	3
13	Na₃PO₄ (10)	100	60	12	2
14	Na ₃ PO ₄ (20)	100	50	22	5
15	Na ₂ HPO ₄ (20)	100	51	17	6
16	NaH ₂ PO ₄ (20)	100	40	24	6
17	K ₃ PO ₄ (20)	100	60	10	2
18	K ₃ PO ₄ (40)	100	52	12	3
19	K ₂ HPO ₄ (20)	100	51	22	4

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N_2H_4 · H_2O (0.3 mmol, 1.5 equiv), 10 mol% of 5 wt% Pd/C, NaBH₄ (50 mol%), 100 mg 4 Å molecular sieve with additives in 1,4-dixoane (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol.

Table S6. Evaluation of hydride source[a]

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N_2H_4 · H_2O (0.3 mmol, 1.5 equiv), 10 mol% of 5 wt% Pd/C, various hydride sources with 100 mg 4 Å molecular sieve in 1,4-dioxane (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol; For entry 3, the reaction was run under hydrogen gas sealed in the reaction tube.

Table S7. Evaluation of N source[a]

entry	N source	conv. (%)		yield (%)		9		
			3a	4	5	// V 'N	NH ₂ Bo	
1	N1	100	58	8	2	NH ₂ -NH ₂ ·H ₂ O	H ₂ N—NH	H ₂ N—N
2	N2	-	-	-	-	NI N2	N3	N4
3	N3	49	21	1<	1<	11/1 11/2	103	114
4	N4	-	-	-	-			
5	N5	-	-	-	-		,Ts	
6	N6	-	-	-	-	O N-NH ₂ H ₂ N-	NH _{H2} N Boc	NH ₃ H ₂ O
7	N7	60	11	24	1<	_		
8	N8	87	18	56	1<	N5 N6	N7	N8

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N sources (0.3 mmol, 1.5 equiv), 10 mol% of 5 wt% Pd/C, NaBH₄ (50 mol%) with 100 mg 4 Å molecular sieve in 1,4-dioxane (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields calculated were based on phenol; For entry 8, 10.5 equiv ammonia water was used with 200 mg 4 Å molecular sieve.

Table S8. Optimization of hydride and hydrazine amount[a]

entry	N₂H₄·H₂O (x equiv)	hydride source (y equiv)	conv. (%)		yield (%)	
	,	. ,	. ,	3a	`4	5
1	1.5	NaBH ₄ (0.5)	100	58	8	2
2	1.5	-	67	25	4	10
3	4.5	-	78	51	2	2
4	6.0	-	82	49	2	2
5	4.5	NaBH ₄ (0.5)	100	49	6	1<
6	4.5	NaBH ₄ (0.25)	100	58	2	2
7	3.0	NaBH ₄ (0.25)	100	58	4	2
8	3.0	HCO ₂ Na (1.0)	100	61	10	7
9	N₂H₄ (THF)	HCO₂Na (1.0)	100	64	3	1<
	(3.0)					

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N_2H_4 · H_2O (x equiv), 10 mol% of 5 wt% Pd/C, various hydride sources with 4 Å molecular sieve (100 mg per 0.3 mmol N_2H_4 · H_2O) in 1,4-dioxane (1 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol.

Table S9. Optimization of hydride, additives, and hydrazine amount in N_2H_4 in THF solution (1M)^[a]

entry	N ₂ H ₄ in THF	hydride source	additives	conv.		yield	
	(x equiv)	(y equiv)	(z mol%)	(%)	3a	(%) 4	5
		1100 N (4.0)		400			
1	3.0	HCO₂Na (1.0)	-	100	64	3	1<
2	3.0	HCO₂Na (1.0)	LiOH (20)	97	54	2	1<
3	3.0	HCO₂Na (1.0)	LiOH (40)	100	68	2	1<
4	3.0	HCO ₂ Na (1.0)	LiOH (50)	89	57	2	1<
5	3.0	HCO ₂ Na (1.0)	LiOH (80)	96	57	1	1<
6	3.0	HCO ₂ Na (1.0)	LiOH (160)	95	43	1<	1<
7	3.0	HCO₂Na (1.0)	LiOH·H ₂ O (40)	89	63	2	1<
8	3.0	HCO₂Na (1.0)	LiF (40)	91	58	2	1<
9	3.0	HCO ₂ Na (1.0)	LiCI (40)	100	56	5	2
10	3.0	HCO ₂ Na (1.0)	LiBr (40)	83	50	2	1<
11	3.0	HCO ₂ Na (1.0)	Lil (40)	-	-	-	-
12	3.0	HCO ₂ Na (1.0)	LiBF ₄ (40)	54	28	1<	1<
13	3.0	HCO ₂ Na (1.0)	LiOAc (40)	59	28	1<	1<
14	3.0	HCO ₂ Na (1.0)	LiO ^t Bu (40)	96	56	2	1<
15	2.25	HCO ₂ Na (1.0)	LiOH (40)	100	69	4	2
16	1.875	HCO ₂ Na (1.0)	LiOH (40)	92	56	2	1
17	1.5	HCO ₂ Na (1.0)	LiOH (40)	97	56	7	4
18	2.25	HCO ₂ Na (1.0)	-	100	55	12	3
19	2.25	HCO ₂ Na (1.0)	NaOH (40)	100	64	5	3
20	2.25	HCO ₂ Na (1.0)	Ca(OH) ₂ (20)	100	65	5	2
21	2.25	HCO ₂ Na (1.0)	KOH (40)	100	61	7	3
22	2.25	HCO ₂ H (1.0)	-` ´	86	36	5	10
23	2.25	HCO ₂ H (1.0)	LiOH (100)	98	51	3	2
24	2.25	HCO ₂ H (1.0)	LiOH (140)	95	59	3	2
25	2.25	HCO₂Na (1.0)	H ₂ O (40)	100	55	10	3
26	2.25	NaBH ₄ (0.25)	LiOH (40)	100	62	1<	1<
27	2.25	NaBH ₄ (0.5)	LiOH (40)	100	47	1<	1<

[a] Reaction conditions: phenol (0.2 mmol, 1 equiv), N₂H₄ in THF solution (1 M) (x equiv), 10 mol% of 5 wt% Pd/C, various hydride sources, 4 Å molecular sieve (100 mg per 0.3 mmol N₂H₄ (THF) in 1,4-dioxane (0.2 M) with additives were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol.

Table S10. Evaluation of temperature, Pd/C amount in N_2H_4 in THF solution $(1M)^{[a]}$

entry	N₂H₄ in THF (x equiv)	Pd/C (y mol%)	<i>T</i> (°C)	conv. (%)		yield (%)	
	(x equiv)	(y 11101 <i>7</i> 0)	(0)	(70)	3a	4	5
1 ^b	2.25	10	150	100	69	4	2
2	2.25	10	170	100	68	2	1
3	2.25	5	170	87	55	1	1<
4	2.25	6	170	97	65	3	1<
5 ^b	2.25	7	170	100	72	4	2
6	2.25	9	170	100	69	3	2
7	2.25	12.5	170	100	67	3	1<
8	2.5	7	170	100	72	2	1
9	2.5	7	190	98	70	3	2
10	2.75	7	170	100	70	2	1
11	3.0	7	170	100	70	2	1
12	1.875	7	170	100	65	6	4
13	1.5	7	170	95	66	4	2

[a] Reaction conditions: phenol (0.4 mmol, 1 equiv), N₂H₄ in THF solution (1 M) (x equiv), y mol% of 5 wt% Pd/C, HCO₂Na (0.4 mmol, 1 equiv), 4 A molecular sieve (100 mg per 0.3 mmol N₂H₄ (THF) in 1,4-dioxane (0.2 M) with LiOH (40 mol%) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, and yields were calculated based on phenol; [b] 0.2 mmol phenol was used instead.

Table S11. Optimization of the hydrazine amount for the phenol with hydrazine acting both as N and H sources without extra hydride donor^[a]

entry	N ₂ H ₄ ·H ₂ O (x equiv)	conv. (%)	3a (%)	4 (%)	5 (%)
1	N ₂ H ₄ •H ₂ O 4.5 eq	100	69	1<	1<
2	N ₂ H ₄ •H ₂ O 3.0 eq	100	72 (71)	1<	1<
3	N ₂ H ₄ •H ₂ O 2.5 eq	84	64	1<	1<
4 ^b	N ₂ H ₄ •H ₂ O 4.5 eq	100	55	1<	1<

[a] Reaction conditions: phenol (0.4 mmol, 1 equiv), N_2H_4 · H_2O (x equiv), 7 mol% of 5 wt% Pd/C, LiOH (40 mol%), with 4 Å molecular sieve (100 mg per 0.3 mmol N_2H_4 · H_2O) in 1,4-dioxane (2 mL) were stirred under argon for 12 h; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard, isolated yield was given in parentheses, yields calculated based on phenol; [b] the reaction was run under 150 °C instead.

Table S12. Examination of other catalysts under standard conditions^[a]

entry	catalyst	conv. (%)	3a (%)	4 (%)	5 (%)
1	Pd/C	100	72	1<	1<
2	Ru/C	4	-	-	-
3	Pt/C	6	-	-	-
4	Rh/C	6	-	-	-

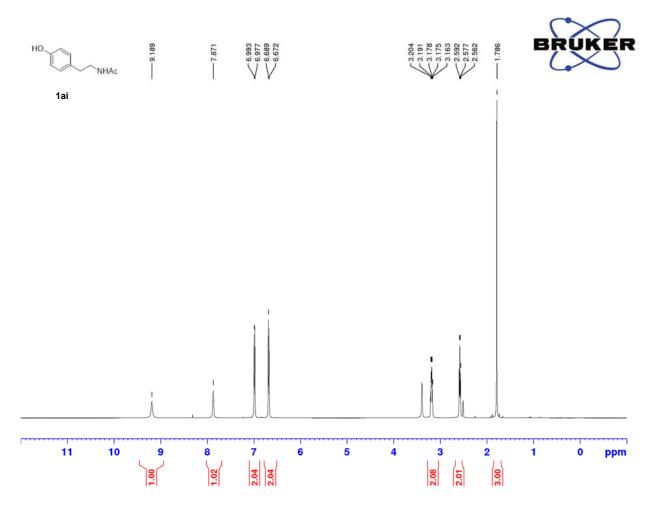
[a] Reaction conditions: phenol (0.4 mmol, 1 equiv), N_2H_4 : H_2O (3 equiv), 7 mol% catalyst, LiOH (40 mol%), with 4 Å molecular sieve (100 mg per 0.3 mmol N_2H_4 : H_2O) in 1,4-dioxane (2 mL) were stirred under argon for 12 h at 170 °C; Starting material conversion and NMR yields were given with 1,3,5-trimethoxylbenzene as the internal standard.

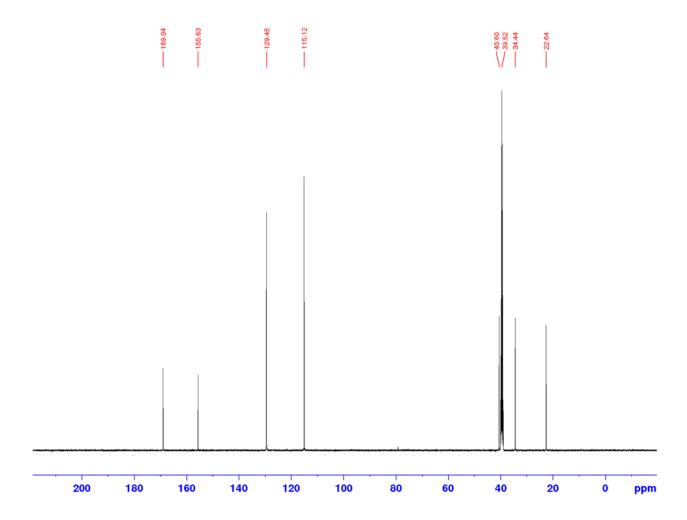
Scheme S1. The preliminary results of lignin monomers

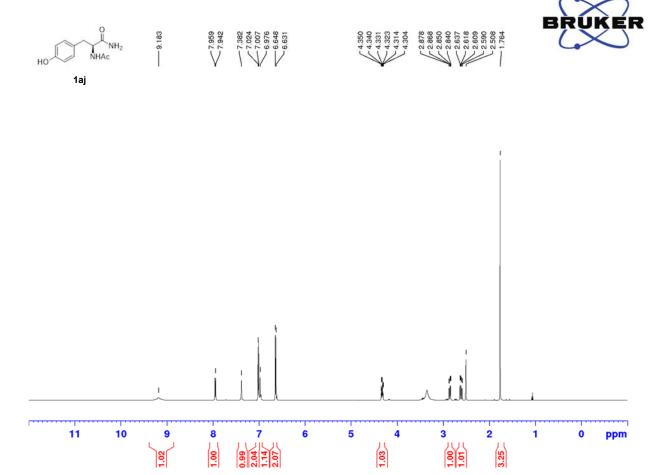
The desired primary aniline products were not detected, instead 4-(3-hydroxypropyl)phenol type products and 4-propylphenol type products were observed.

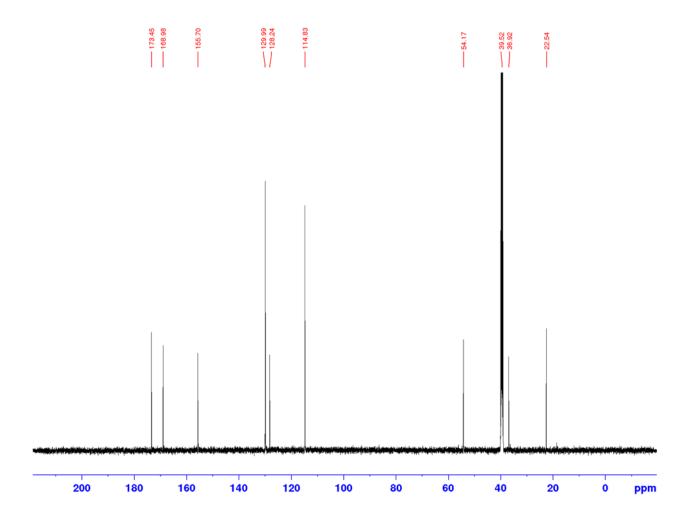
IV. Synthesis of Starting Phenol Materials

1. Synthesis of N-(4-hydroxyphenethyl)acetamide (1ai):


HO NH₂
$$Ac_2O$$
 1.1 equiv NHAc $Tyramine$ 5 mmol Ac_2O 1.1 equiv NHAC Ac_2O 1.1 equiv


The synthesis of N-(4-hydroxyphenethyl)acetamide (**1ai**) was based on the reported literature. [30] Tyramine (**S1**) (5 mmol, 1 equiv) was dissolved into 15 mL NaHCO₃ saturated aq. solution. Then acetic anhydride (5.5 mmol, 1.1 equiv) was added slowly dropwise while the solution being stirred. The resulting suspension was allowed to stir at room temperature for one and half hour. Then aqueous solution was extracted with EtOAc (3x30 mL). The organic phases were collected, dried over Na₂SO₄ and the solvent was removed under vacuum. The product was then purified by the silica gel column chromatography (DCM: MeOH 30:1 to 10:1) to afford *N*-(4-hydroxyphenethyl)acetamide (**1ai**) as a white solid in 49% yield. ¹H NMR: (500 MHz, DMSO-d₆, ppm): δ 9.19 (br, 1H), 7.87 (br, 1H), 6.99 (d, J = 8.4 Hz, 2H), 6.68 (d, J = 8.4 Hz, 2H), 3.18 (dd, J = 13.3 Hz, 7.1 Hz, 2H), 2.58 (t, J = 7.5 Hz, 2H), 1.79 (s, 3H); ¹³C NMR: (125 MHz, DMSO-d₆, ppm): δ 169.0, 155.6, 129.5, 115.1, 40.6, 34.4, 22.6; HRMS: (APCI, m/z) calcd for C₁₀H₁₄O₂N [M+H]⁺ 180.1019, found: 180.1021


2. Synthesis of Ac-Tyr-NH₂ (1ab):


Ac-Tyr-OEt (**S2**) (2 mmol, 1 equiv) was dissolved into 35 mL ammonium hydroxide aq. solution. The resulting solution was allowed to stir at room temperature for 12 hours. Then water was removed with a rotary evaporator with the help of the ethanol (3x15 mL). After that, the crude compound was put under high vacuum for 4 hours to give the pure product as a white solid. This product was directly used without any further purification. ¹H NMR: (500 MHz, DMSO-d₆, ppm): δ 9.18 (br, 1H), 7.95 (dd, J = 8.4 Hz, 1H), 7.38 (br, 1H), 7.02 (d, J = 8.5 Hz, 2H), 6.98 (br, 1H), 6.64 (d, J = 8.5 Hz, 2H), 4.35 – 4.30 (m, 1H), 2.86 (dd, J = 13.8 Hz, 4.8 Hz, 1H), 2.61 (dd, J = 13.8 Hz, 9.6 Hz, 1H), 1.76 (s, 3H); ¹³C NMR: (125 MHz, DMSO-d₆, ppm): δ 173.5, 169.0, 155.7, 130.0, 128.2, 114.8, 54.2, 36.9, 22.5; HRMS: (APCI, m/z) calcd for C₁₁H₁₃O₃N₂ [M-H]⁻ 221.0932, found: 221.0923

V. Spectroscopic Data of Synthesized Starting Phenol Materials

VI. Spectroscopic Data of Products

$${ \bigvee}^{NH_2}$$

Aniline (3a) (CAS: 62-53-3):[1]

Following the general procedure, DCM was used to perform the extraction. After column chromatography on silica gel (eluent: DCM: pentane: 1:1 to 4:1), the product was isolated as a pale yellow oil (26.4 mg, 71% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.19 (t, J = 7.9 Hz, 2H), 6.80 (t, J = 3.1 Hz, 1H), 6.79 (d, J = 4.1 Hz, 2H), 3.64 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 146.5, 129.4, 115.2; EI-MS (m/z): 93.0

o-Toluidine (3b) (CAS: 95-53-4):[2]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a pale yellow oil (30.5 mg, 71% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.07 – 7.04 (m, 2H), 6.74 – 6.68 (m, 2H), 3.60 (br, 2H), 2.18 (s, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 144.7, 130.6, 127.1, 122.4, 118.7, 115.0, 17.5; EI-MS (m/z): 107.0

m-Toluidine (3c) (CAS: 108-44-1):[3]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a pale yellow oil (30.9 mg, 72% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.06 (t, J = 7.7 Hz, 1H), 6.60 (d, J = 7.5 Hz, 1H), 6.53 – 6.50 (m, 2H), 3.60 (br, 2H), 2.28 (s, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 146.5, 139.2, 129.3, 119.6, 116.0, 112.4, 21.6; EI-MS (m/z):107.1

p-Toluidine (3d) (CAS: 106-49-0):[1]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a pale yellow solid (31.0 mg, 72% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.97 (d, J = 7.9 Hz, 2H), 6.62 (d, J = 8.4 Hz, 2H), 3.53 (br, 2H), 2.25 (s, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 143.9, 129.9, 127.9, 115.4, 20.6; EI-MS (m/z): 106.9

4-Propylaniline (3e) (CAS: 2696-84-6):[26]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as an orange oil (38.1 mg, 71% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.99 (d, J = 8.4 Hz, 2H), 6.64 (d, J = 8.4 Hz, 2H), 3.54 (br, 2H), 2.50 (t, J = 7.6 Hz, 2H), 1.61 (sext, J = 7.5 Hz, 2H), 0.94 (t, J = 7.3 Hz, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 144.2, 133.0, 129.3, 115.3, 37.3, 25.0, 13.9; EI-MS (m/z): 135.1

4-(tert-Butyl)aniline (3f) (CAS: 769-92-6):[4]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a colorless oil (45.0 mg, 75% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.19 (d, J = 8.6 Hz, 2H), 6.65 (d, J = 8.7 Hz, 2H), 3.55 (br, 2H), 1.29 (s, 9H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 143.9, 141.6, 126.2, 115.1, 34.0, 31.7; EI-MS (m/z): 149.1

4-(2,4,4-Trimethylpentan-2-yl)aniline (3g) (CAS: 42265-56-5):[23]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as a colorless oil (42.8 mg, 52% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.16 (d, J = 8.7 Hz, 2H), 6.64 (d, J = 8.7 Hz, 2H), 3.54 (br, 2H), 1.69 (s, 2H), 1.33 (s, 6H), 0.74 (s, 9H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 143.7, 140.4, 127.0, 114.9, 57.1, 37.9, 32.4, 31.9, 31.8; HRMS: (APCl, m/z) calcd for C₁₄H₂₄N [M+H]⁺ 206.1903, found: 206.1903

4-Benzylaniline (3h) (CAS: 1135-12-2):[23]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as an orange oil (45.5 mg, 62% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.32 – 7.29 (m, 2H), 7.22-7.20 (m, 3H), 7.01 (d, J = 8.3 Hz, 2H), 6.65 (d, J = 8.3 Hz, 2H), 3.91 (s, 2H), 3.56 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 144.6, 142.0, 131.3, 129.9, 128.9, 128.5, 126.0, 115.4, 41.2; El-MS (m/z): 183.1

[1,1'-Biphenyl]-4-amine (3i) (CAS: 92-67-1):[9]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as a yellow solid (36.0 mg, 53% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.55 (dd, J = 8.1 Hz, 1.3 Hz, 2H), 7.44 – 7.39 (m, 4H), 7.28 (tt, J = 7.4 Hz, 1.1 Hz, 1H), 6.77 (d, J = 8.5 Hz,

2H), 3.73 (br, 2H); ¹³C NMR: (125 MHz, CDCl₃, ppm): δ 146.0, 141.3, 131.7, 128.8, 128.1, 126.5, 126.4,115.4; EI-MS (*m/z*): 169.1

Naphthalen-2-amine (3j) (CAS: 91-59-8):[2]

Following the general procedure, EtOAc was used to perform the extraction. After column on silica gel isolation (eluent: hexanes: EtOAc = 5:1 to 3:1), the product was isolated as a white solid (49.1 mg, 86% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.72 (d, J = 8.1 Hz, 1H), 7.68 (d, J = 8.7 Hz, 1H), 7.62 (d, J = 8.2 Hz, 1H), 7.41 – 7.38 (m, 1H), 7.27 – 7.24 (m, 1H), 7.00 (d, J = 2.2 Hz, 1H), 6.96 (dd, J = 8.7 Hz, 2.4 Hz, 1H), 3.84 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 144.2, 135.0, 129.3, 128.1, 127.8, 126.5, 125.9, 122.6, 118.3, 108.7; EI-MS (m/z): 143.1

Naphthalen-1-amine (3k) (CAS: 134-32-7):[2]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a white solid (41.5 mg, 73% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.84 – 7.81 (m, 2H), 7.49 – 7.45 (m, 2H), 7.35 – 7.29 (m, 2H), 6.79 (dd, J = 7.0 Hz, 1.3 Hz, 1H), 4.15 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 142.2, 134.5, 128.7, 126.5, 126.0, 125.0, 123.8, 120.9, 119.1, 109.8; EI-MS (m/z): 143.1

Phenanthren-9-amine (3I) (CAS: 947-73-9):[8]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as a pink solid (23.4 mg, 30% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 8.72 (d, J = 7.0 Hz, 1H), 8.60 (d, J = 8.2 Hz, 1H), 7.94 (dd, J = 3.1 Hz, 0.9 Hz, 1H), 7.77 – 7.63 (m, 3H), 7.52 – 7.49 (m, 1H), 7.46-7.42 (m, 1H), 4.16 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 140.0, 133.4, 131.3, 127.0, 126.8, 126.5, 126.4, 126.3, 125.6, 123.6, 123.5, 122.6, 121.4, 107.6; EI-MS (m/z): 193.1

3,5-Dimethylaniline (3m) (CAS: 108-69-0):[10]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as a yellow solid (34.4 mg, 71% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.43 (s, 1H), 6.34 (s, 2H), 3.54 (br, 2H), 2.23 (s, 6H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 146.5, 139.1, 120.6, 113.2, 21.4; EI-MS (m/z): 121.1

3,4-Dimethylaniline (3n) (CAS: 95-64-7):[24]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a yellow solid (30.8 mg, 64% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.94 (d, J = 7.9 Hz, 1H), 6.54 (d, J = 2.3 Hz, 1H), 6.47 (dd, J = 7.9 Hz, 2.4 Hz, 1H), 3.47 (br, 2H), 2.20 (s, 3H), 2.17 (s, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 144.3, 137.5, 130.4, 126.6, 117.0, 112.8, 20.0, 18.8; EI-MS (m/z): 121.1

2,4-Dimethylaniline (3o) (CAS: 95-68-1):[25]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a yellow solid (24.4 mg, 50% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.89 (s, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.61 (d, J = 7.9 Hz, 1H), 3.40 (br, 2H), 2.24 (s, 3H), 2.16 (s, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 142.1, 131.2, 128.0, 127.4, 122.6, 115.2, 20.5, 17.4; EI-MS (m/z): 121.1

5-Isopropyl-2-methylaniline (3p) (CAS: 2051-53-8):[19]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as a colorless oil (30.0 mg, 50% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.98 (d, J = 7.6 Hz, 1H), 6.60 (dd, J = 7.6 Hz, 1.7 Hz, 1H), 6.56 (d, J = 1.6 Hz, 1H), 3.57 (br, 2H), 2.80 (sept, J = 6.9 Hz, 1H), 2.14 (s, 3H), 1.22 (d, J = 6.9 Hz, 6H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 148.1, 144.5, 130.5, 119.9, 116.9, 113.3, 33.9, 24.2, 17.1; EI-MS (m/z): 149.1

2-Isopropyl-5-methylaniline (3q) (CAS: 2437-39-0):[3]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as a colorless oil (X mg, X% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.03 (d, J = 7.8 Hz, 1H), 6.61 (d, J = 7.8 Hz, 1H), 6.52 (d, J = 1.0 Hz, 1H), 3.60 (br, 2H), 2.87 (heptet, J = 6.9

Hz, 1H), 2.24 (s, 3H), 1.25 (d, J = 6.9 Hz, 6H); ¹³C NMR: (125 MHz, CDCl₃, ppm): δ 143.3, 136.3, 130.0, 125.5, 119.9, 116.7, 27.5, 22.6, 21.1; EI-MS (m/z): 149.1

2,3-Dihydro-1*H*-inden-5-amine (3r) (CAS: 24425-40-9):[15]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as an orange solid (37.8 mg, 71% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.02 (d, J = 7.9 Hz, 1H), 6.61 (s, 1H), 6.51 (dd, J = 7.6 Hz, 2.2 Hz, 1H), 3.44 (br, 2H), 2.84 – 2.80 (m, 4H), 2.05 (quint, J = 7.5 Hz, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 145.6, 144.8, 134.5, 124.9, 113.5, 111.7, 33.1, 32.1, 25.8; EI-MS (m/z): 133.1

4-Methoxyaniline (3s) (CAS: 104-94-9):[10]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 3:1), the product was isolated as a yellow solid (12.2 mg, 25% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.75 (d, J = 8.8 Hz 2H), 6.65 (d, J = 8.9 Hz, 2H), 3.75 (s, 3H), 3.21 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 153.0, 140.0, 116.6, 115.0, 55.9; EI-MS (m/z): 123.1

7-Methoxynaphthalen-2-amine (3t) (CAS: 92287-46-2):[20]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 1:1), the product was isolated as a pink solid (38.2 mg, 55% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.60 – 7.57 (m, 2H), 6.92 – 6.89 (m, 3H), 6.79 (dd, J = 8.6 Hz, 2.3 Hz, 1H), 3.90 (s, 3H), 3.83 (br, 2H); 13 C

NMR: (125 MHz, CDCl₃, ppm): δ 158.3, 144.8, 136.3, 129.3, 129.1, 123.5, 115.9, 115.1, 108.0, 104.3, 55.3; EI-MS (*m/z*): 173.1

Benzene-1,4-diamine (3u) (CAS: 106-50-3):[11]

4-Aminophenol as staring material: following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: DCM: MeOH = 10:1), the product was isolated as a grey solid (17.6 mg, 41% yield).

Hydroquinone as staring material: following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: DCM: MeOH = 10:1), the product was isolated as a grey solid (21.7 mg, 50% yield).

¹H NMR: (500 MHz, CDCl₃, ppm): δ 6.57 (s, 4H), 3.33 (br, 4H); ¹³C NMR: (125 MHz, CDCl₃, ppm): δ 138.7, 116.8; EI-MS (*m/z*): 108.0

N¹-phenylbenzene-1,4-diamine (3v) (CAS: 101-54-2):[12]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 1:1), the product was isolated as a red solid (33.3 mg, 45% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.19 (t, J = 6.5 Hz, 2H), 7.00 (d, J = 8.6 Hz, 2H), 6.86 (d, J = 8.7 Hz, 2H), 6.79 (t, J = 7.4 Hz, 1H), 6.67 (d, J = 8.6 Hz, 2H), 5.41 (br, 1H), 3.55 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 146.0, 142.2, 134.0, 129.4, 123.5, 119.1, 116.3, 115.2; EI-MS (m/z): 184.1

3-Aminophenol (3w) (CAS: 591-27-5):[22]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 1:1), the product was isolated as a light yellow solid (19.2 mg, 44% yield). 1 H NMR: (500 MHz, DMSO-d₆, ppm): δ 8.84 (br, 1H), 6.77 (t, J = 8.1 Hz, 1H), 6.00 – 5.99 (m, 2H), 5.94 – 5.91 (m, 1H), 4.87 (br, 2H); 13 C NMR: (125 MHz, DMSO-d₆, ppm): δ 158.1, 149.8, 129.4, 105.4, 103.3, 100.9; EI-MS (m/z): 109.0

$$\underset{\mathsf{NH}_2}{\mathsf{NH}_2}$$

4-Aminobenzamide (3x) (CAS: 2835-68-9):[16]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: DCM: MeOH = 10:1), the product was isolated as a light yellow solid (25.0 mg, 46% yield). 1 H NMR: (500 MHz, DMSO-d₆, ppm): δ 7.59 (d, J = 8.6 Hz, 2H), 7.52 (br, 1H), 6.84 (br, 1H), 6.53 (d, J = 8.7 Hz, 2H), 5.60 (br, 2H); 13 C NMR: (125 MHz, DMSO-d₆, ppm): δ 168.1, 151.7, 129.1, 120.9, 112.5; EI-MS (m/z): 136.1

2-(4-Aminophenyl)acetamide (3y) (CAS: 6633-76-7):[21]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: DCM: MeOH = 10:1), the product was isolated as a white solid (42.0 mg, 70% yield). 1 H NMR: (500 MHz, DMSO-d₆, ppm): δ 7.25 (br, 1H), 6.90 (d, J = 8.4 Hz, 2H), 6.74 (br, 1H), 6.49 (d, J = 8.4 Hz, 2H), 4.89 (br, 2H), 3.15 (s, 2H); 13 C NMR: (125 MHz, DMSO-d₆, ppm): δ 173.1, 147.0, 129.4, 123.4, 113.7, 41.6; EI-MS (m/z): 150.1

$$H_2N$$
 NH_2

4,4'-(Ethane-1,1-diyl)dianiline (3z) (CAS: 14755-35-2):[29]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 2:3), the product was isolated as a white solid (12.0 mg, 14% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.99 (d, J = 8.2 Hz, 4H), 6.61 (d, 2H), 3.95 (q, J = 7.2 Hz, 1H), 3.54 (br, 4H), 1.54 (d, J = 7.5 Hz, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 144.3, 137.5, 128.4, 115.3, 43.2, 22.4; EI-MS (m/z): 212.1

Pyridin-3-amine (3aa) (CAS: 462-08-8):[6]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: EtOAc: MeOH = 2:1), the product was isolated as a yellow solid (16.8 mg, 45% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 8.09 (d, J = 2.7 Hz, 1H), 8.01 (d, J = 5.8 Hz, 1H), 7.05 (dd, J = 8.1 Hz, 4.1 Hz, 1H), 6.97 (ddd, J = 8.2 Hz, 2.8 Hz, 1.4 Hz, 1H), 3.71 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 142.6, 140.2, 123.8, 121.6; EI-MS (m/z): 94.0

Quinolin-6-amine (3ab) (CAS: 580-15-4):[14]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: EtOAc), the product was isolated as a brown solid (41.6 mg, 72% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 8.65 (t, J = 4.2 Hz, 1.6 Hz, 1H), 7.90 (t, J = 8.5 Hz, 2H), 7.26 (dd, J = 8.3 Hz, 4.2 Hz, 1H), 7.15 (dd, J = 8.9 Hz, 2.6 Hz, 1H), 6.89 (d, J = 2.5 Hz, 1H), 3.94 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 146.9, 144.8, 143.5, 133.9 130.6, 129.9, 121.7, 121.5, 107.5; EI-MS (m/z): 144.0

Isoquinolin-5-amine (3ac) (CAS: 1125-60-6):[4]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 1:2), the product was isolated as a yellow solid (17.5 mg, 30% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 9.18 (d, J = 0.7 Hz, 1H), 8.49 (d, J = 6.0 Hz, 1H), 7.58 (d, J = 6.0 Hz, 1H), 7.42 – 7.41 (m, 2H), 6.97 – 6.95 (m, 1H), 4.21 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 153.1, 142.2, 141.4, 129.6, 127.9, 126.1, 118.2, 114.2, 113.2; EI-MS (m/z): 144.1

$$\bigvee_{\substack{N\\H}} NH_2$$

9H-carbazol-2-amine (3ad) (CAS: 4539-51-9):[18]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: acetone: EtOAc: hexanes = 1: 2: 2), the product was isolated as a yellow solid (47.8 mg, 66% yield). 1 H NMR: (500 MHz, acetone-d6, ppm): δ 9.84 (br, 1H), 7.84 (d, J = 7.8 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.17 (t, J = 7.0 Hz, 1H), 7.03 (t, J = 7.5 Hz, 1H), 6.72 (d, J = 1.8 Hz, 1H), 6.57 (dd, J = 8.3 Hz, 2.0 Hz, 1H), 4.68 (br, 2H); 13 C NMR: (125 MHz, acetone-d6, ppm): δ 148.7, 143.2, 140.8, 125.2, 124.1, 121.5, 119.4, 119.3, 115.5, 111.0, 109.5, 96.0; El-MS (m/z): 182.1

9H-carbazol-4-amine (3ae) (CAS: 18992-64-8):[17]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: DCM: hexanes = 10:1), the product was isolated as a yellow solid (22.0 mg, 30% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 8.04 (br, 1H), 7.98 (d, J = 7.9 Hz, 1H), 7.44 – 7.37 (m, 2H), 7.25 – 7.22 (m, 2H), 6.90 (d, J = 8.0 Hz, 1H), 6.55 (d, J = 7.7, 1H), 4.34 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 142.8, 141.0, 139.1, 127.1, 124.7, 123.1, 121.1, 119.6, 111.0, 110.3, 106.2, 101.3; EI-MS (m/z): 182.1

Ethyl 4-aminobenzoate (3af) (CAS: 94-09-7):[5]

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 5:1), the product was isolated as a white solid (21.1 mg, 32% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.86 – 7.85 (m, 2H), 6.64 – 6.63 (m, 2H), 4.31 (q, J = 7.1 Hz, 2H), 4.05 (br, 2H), 1.36 (t, J = 7.1 Hz, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 166.8, 150.8, 131.7, 120.2, 113.9, 60.4, 14.6; EI-MS (m/z): 165.2

Pyridin-4-amine (3ag) (CAS: 504-24-5):[7]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: DCM: MeOH = 5:1), the product was isolated as a white solid (19.5 mg, 52% yield). 1 H NMR: (500 MHz, DMSO-d₆, ppm): δ 7.95 (dd, J = 4.8 Hz, 1.6 Hz, 2H), 6.44 (dd, J = 4.7 Hz, 1.6 Hz, 2H), 5.95 (br, 2H); 13 C NMR: (125 MHz, DMSO-d₆, ppm): δ 154.2, 149.5, 108.8; EI-MS (m/z): 94.0

1*H*-indol-5-amine (3ah) (CAS: 5192-03-0):^[16]

Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 1:1), the product was isolated as a yellow solid (47.3 mg, 90% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 7.99 (br, 1H), 7.19 (d, J = 8.5 Hz, 1H), 7.12 (t, J = 2.8 Hz, 1H), 6.96 (d, J = 2.2 Hz, 1H), 6.67 (dd, J = 8.5 Hz,

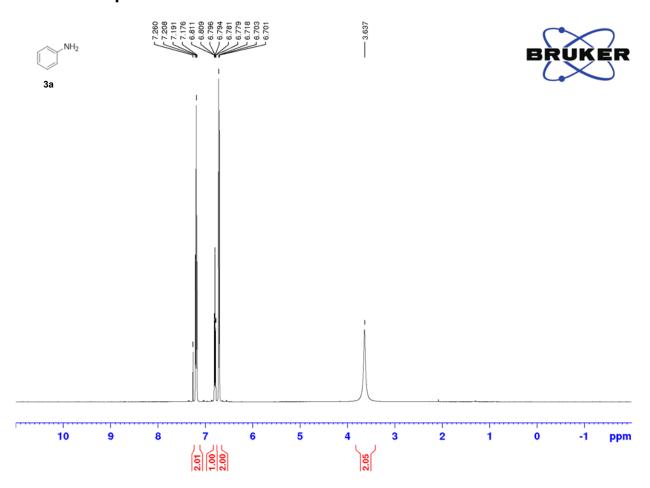
2.2 Hz, 1H), 6.39 – 6.37 (m, 1H), 3.39 (br, 2H); ¹³C NMR: (125 MHz, CDCl₃, ppm): δ 139.6, 130.8, 128.9, 124.8, 113.1, 111.6, 105.7, 101.7; EI-MS (*m/z*): 132.0

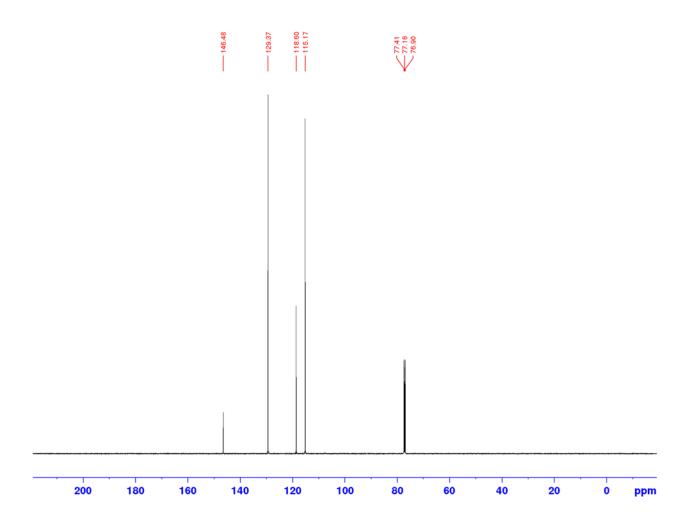
N-(4-aminophenethyl)acetamide (3ai) (CAS: 40377-41-1):[27]

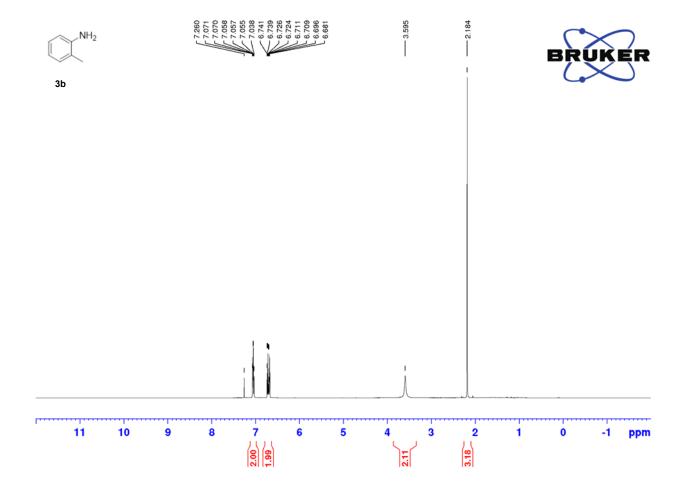
Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: DCM: MeOH = 10:1), the product was isolated as a grey solid (45.0 mg, 63% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 6.95 (d, J = 8.4 Hz, 2H), 6.62 (d, J = 8.4 Hz, 2H), 5.68 (br, 1H), 3.62 (br, 2H), 3.42 (q, J = 6.6 Hz, 2H), 2.67 (t, J = 7.0 Hz, 2H), 1.90 (s, 3H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 170.2, 145.0, 129.6, 128.7, 115.4, 40.9, 34.7, 23.4; EI-MS (m/z): 178.1

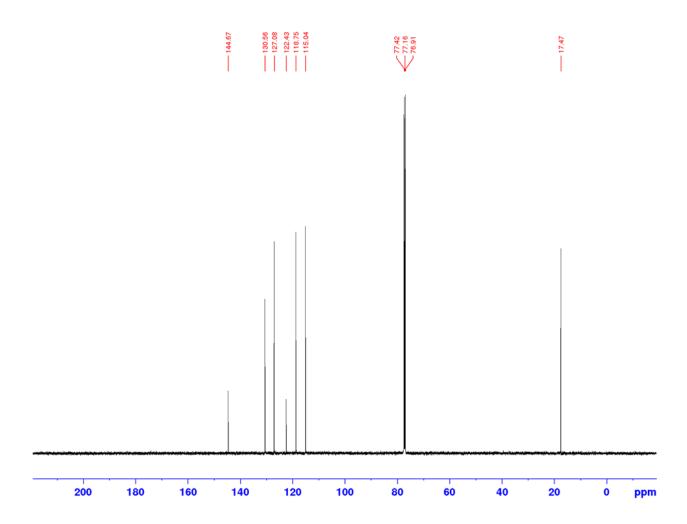
(S)-2-acetamido-3-(4-aminophenyl)propanamide (3aj) (CAS: 115094-27-4):[28]

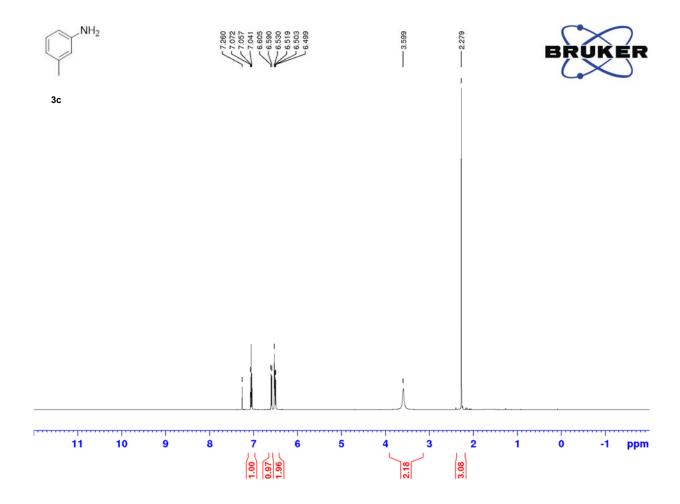
Following the general procedure, MeOH was used to perform the extraction. After preparative TLC isolation (eluent: EtOAc: MeOH = 5:1), the product was isolated as a pale yellow solid (28.8 mg, 33% yield). 1 H NMR: (500 MHz, DMSO-d₆, ppm): δ 7.90 (d, J = 8.5 Hz, 1H), 7.35 (s, 1H), 6.88 (s, 1H), 6.87 (d, J = 8.3 Hz, 2H), 6.44 (d, J = 8.3 Hz, 2H), 4.83 (s, 2H), 4.30 – 4.25 (m, 1H), 2.78 (dd, J = 13.8 Hz, 4.8 Hz, 1H), 2.54 (dd, J = 13.8 Hz, 9.5 Hz, 1H), 1.76 (s, 3H); 13 C NMR: (125 MHz, DMSO-d₆, ppm): δ 173.6, 168.9, 146.8, 129.5, 113.7, 54.3, 37.0, 22.6; HRMS: (ESI, m/z) calcd for $C_{11}H_{15}N_3O_2Na$ [M+Na]⁺ 244.1062, found: 244.1057

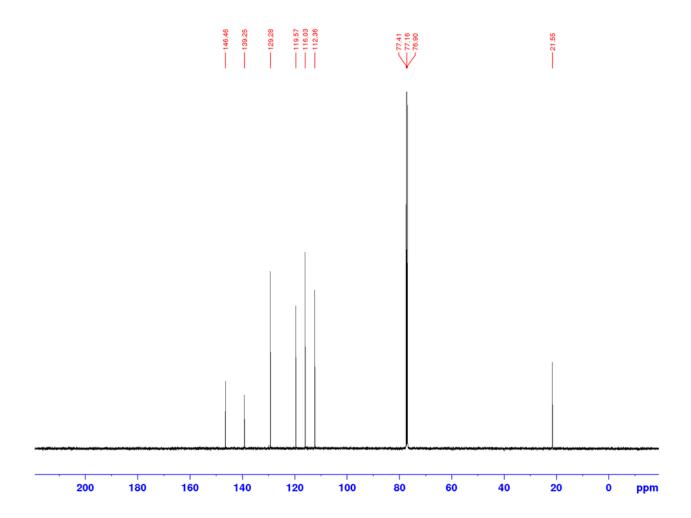

Quinolin-8-amine (3ak) (CAS: 578-66-5):[13]

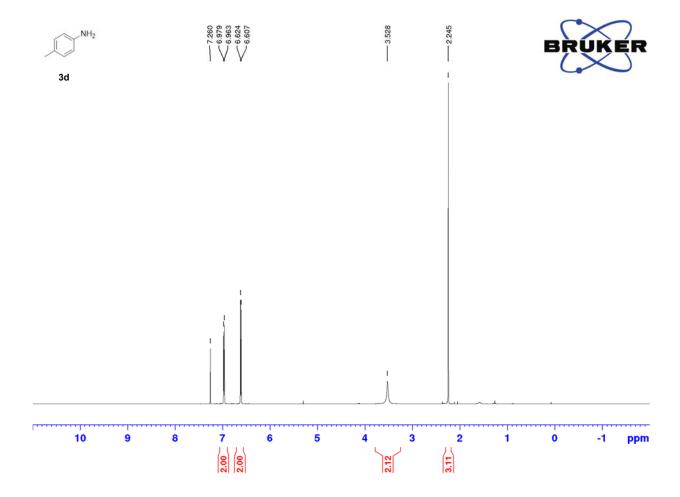

Following the general procedure, EtOAc was used to perform the extraction. After preparative TLC isolation (eluent: hexanes: EtOAc = 1:1), the product was isolated as a yellow solid (14.1 mg, 24% yield). 1 H NMR: (500 MHz, CDCl₃, ppm): δ 8.76 (dd, J = 4.2 Hz, 1.7 Hz, 1H), 8.07 (dd, J = 8.3 Hz, 1.7 Hz, 1H), 7.38 – 7.32 (m, 2H), 7.16 (dd, J = 8.1 Hz, 1.1 Hz, 1H), 6.93 (dd, J = 7.5 Hz, 1.2 Hz, 1H), 5.00 (br, 2H); 13 C NMR: (125 MHz, CDCl₃, ppm): δ 147.6, 144.1, 138.6, 136.1, 129.0, 127.5, 121.5, 116.2, 110.2; EI-MS (m/z): 144.0

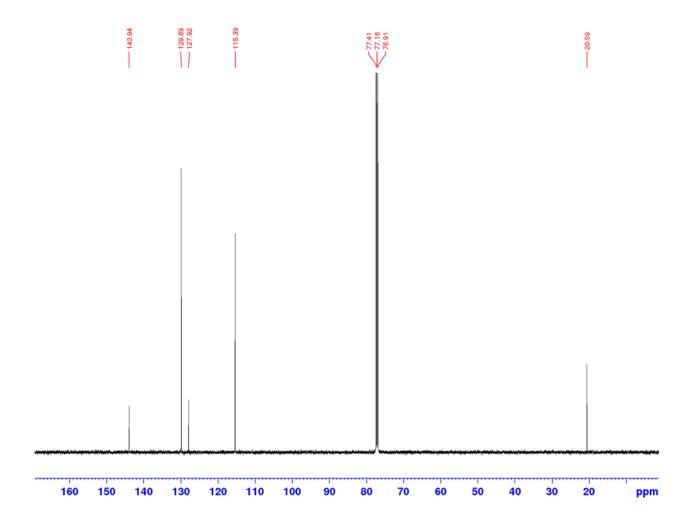

VII. References

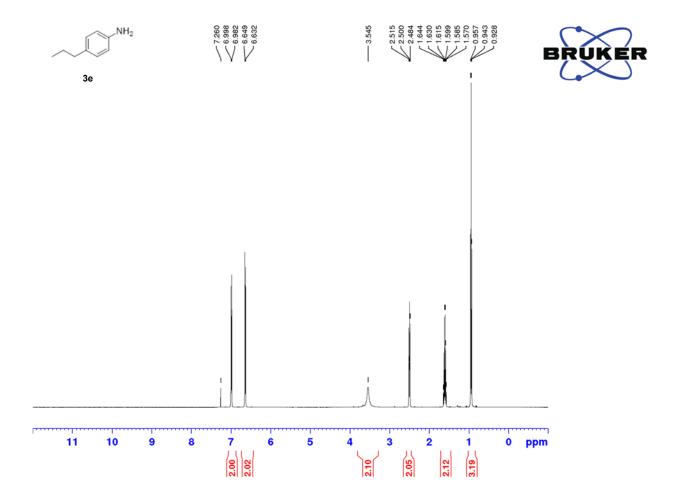

- [1] M. Huang, J. Hou, R. Yang, L. Zhang, X. Zhu, Y. Wan, Synthesis 2014, 46, 3356.
- [2] R. Green, J.F. Hartwig, Angew. Chem., Int. Ed. 2015, 54, 3768.
- [3] X. Jin, Y. Koizumi, K. Yamaguchi, K. Nozaki, N. Mizuno, J. Am. Chem. Soc. 2017, 139, 13821.
- [4] Q. Shen, J. Hartwig, J. Am. Chem. Soc. 2006, 128, 10028.
- [5] T. Ichikawa, M. Netsu, M. Mizuno, T. Mizusaki, Y. Takagi, Y. Sawama, Y. Monguchi, H. Sajiki, Adv. Synth. Catal. 2017, 359, 2269.
- [6] Y. Motoyama, K. Kamo, H. Nagashima, Org. Lett. 2009, 11, 1345.
- [7] A. Gevorgyan, S. Mkrtchyan, T. Grigoryan, V. Laroshenko, Org. Chem. Front. 2017, 4, 2437.
- [8] T. Tempesti, A. Pierini, M. Baumgartner, J. Org. Chem. 2005, 70, 6508.
- [9] E. Alacid, C. Nájera, Org. Lett. 2008, 10, 5011.
- [10] D. Wang, Q. Cai, K. Ding, Adv. Synth. Catal. 2009, 351, 1722.
- [11] X. Gao, H. Fu, R. Qiao, Y. Jiang, Y. Zhao, J. Org. Chem. 2008, 73, 6864.
- [12] S. Kuhl, Y. Fort, R. Schneider, J. Organomet. Chem. 2005 690, 6169.
- [13] J. Spencer, R. Rathnam, H. Patel, N. Anjum, Tetrahedron 2008 64, 10195.
- [14] G. D. Vo, J.F. Hartwig, J. Am. Chem. Soc. 2009, 131, 11049.
- [15] M. Hay, K. Hicks, K. Pchalek, H. Lee, A. Blaser, F. Pruijn, R. Anderson, S. Shinde, W. Wilson. W. Denny, *J. Med. Chem.* **2008**, *51*, 6853.
- [16] V. Udumula, J. Tyler, D. Davis, H. Wang, M. Linford, P. Minson, D. Michaelis, ACS Catal. 2005, 5, 3457.
- [17] K. Tanemura, T. Suzuki, J. Heterocyclic Chem. 2004, 41,1.
- [18] Y. Qu, N. Jiao, Chem. Commun. 2013, 49, 3473.
- [19] M. D. Garrison, B. G. Harvey, J. Appl. Polym. Sci. 2016, 133, 43621.
- [20] Y.-H. Chen, L.-W. Qi, F. Fang, B.Tan, Angew. Chem., Int. Ed. 2017, 56, 16308.
- [21] U. B. Patil, A. S. Singh, J. M. Nagarkar, RSC Adv. 2014, 4, 1102.
- [22] K. J. Prathap, Q. Wu, R. T. Olsson, P. Dinér, Org. Lett. 2017, 19, 4746.
- [23] G. Manolikakes, C. Hernandez, M. Schade, A. Metzger, J. Org. Chem. 2008, 73, 8422.
- [24] H.-J. Xu, Y.-F. Liang, Z.-Y. Cai, H.-X. Qi, C.-Y. Yang, Y.-S. Feng, J. Org. Chem. 2011, 76, 2296.
- [25] S. Herold, S. Möhle, M. Zirbes, F. Richter, H. Nefzger, S. R. Waldvogel, Eur. J. Org. Chem. 2016, 7, 1274.
- [26] Y. Hoshino, N. Ohtsuka, T. Okada, K. Honda, Tetrahedron Lett. 2016, 57, 5304.
- [27] J. Jing, J. Bankefors, C. Bonneaud, E. Sawen, T. Gerfaud, J. Westin, G. El-Bazbouz, L. Kandelin, A. Rousseau, J. Olsson, A. Karlsson, L. Nord, C. Bouix-Peter, A. Kenne, J. Boiteau, L. Tomas, L. Hennequin, C. Harris, *Eur. J. Org. Chem.* **2018**, 23, 2995.
- [28] C. H. Kruse, K. G. Holden, P. H. Offen, M. Pritchard, J. A. Field, D. J. Rieman, P. E. Bender, B. Ferguson, R. G. Greig, G. Poste, *J. Med. Chem.* **1988**, *31*, 1768.
- [29] B. Kim, A. J. Chinn, D. R. Fandrick, C. H. Senanayake, R. A. Singer, S. J. Miller, *J. Am. Chem. Soc.* **2016**, *138*, 7939
- [30] M. Antonio, F. Doria, S. Richter. C. Bertipaglia, M. Mella, C. Sissi, M. Palumbo, M. Freccero, *J. Am. Chem. Soc.* **2009**, *131*, 13132

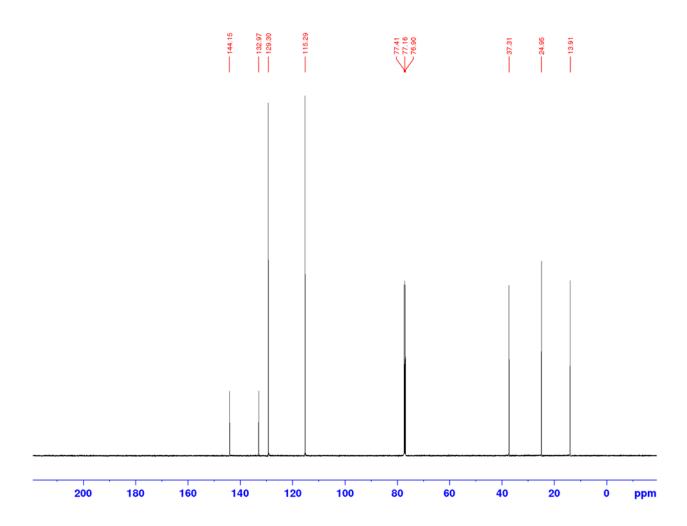

VIII. NMR Spectra of Products

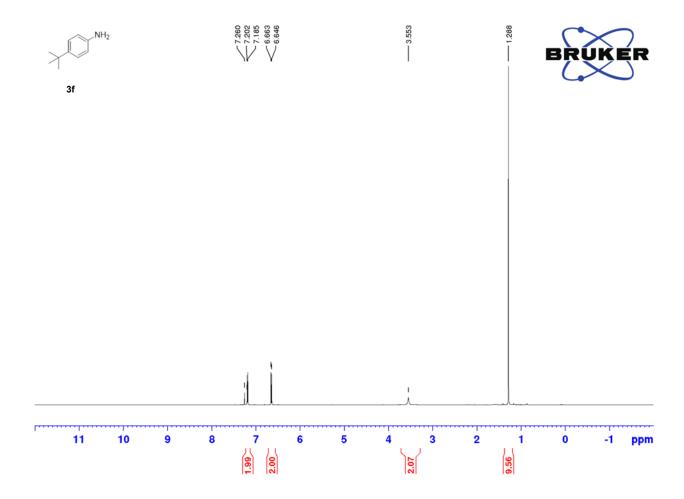


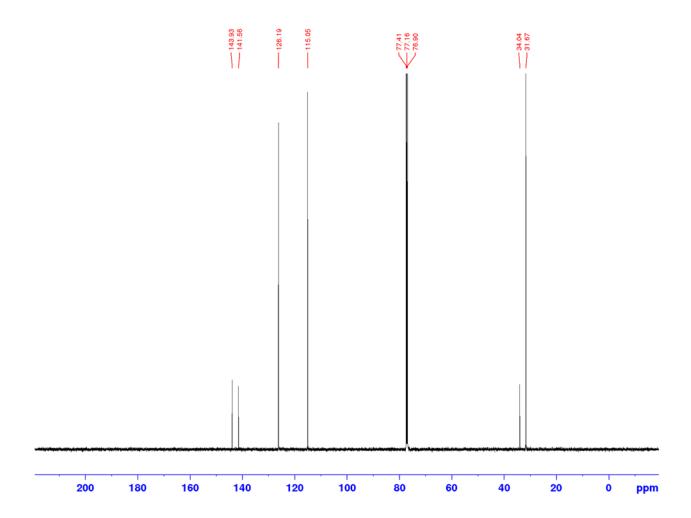


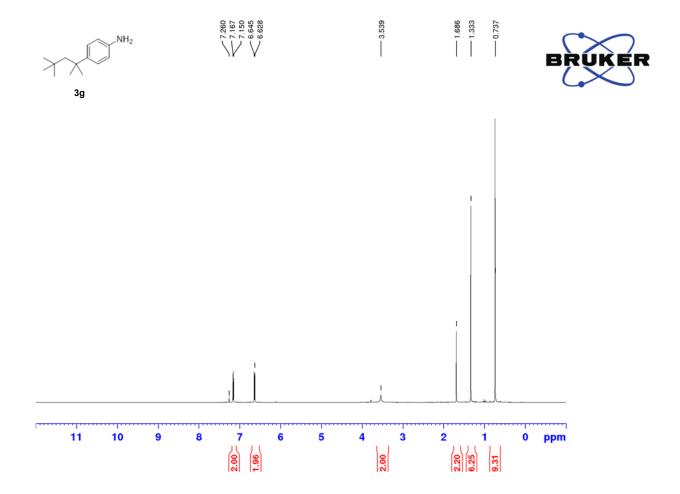


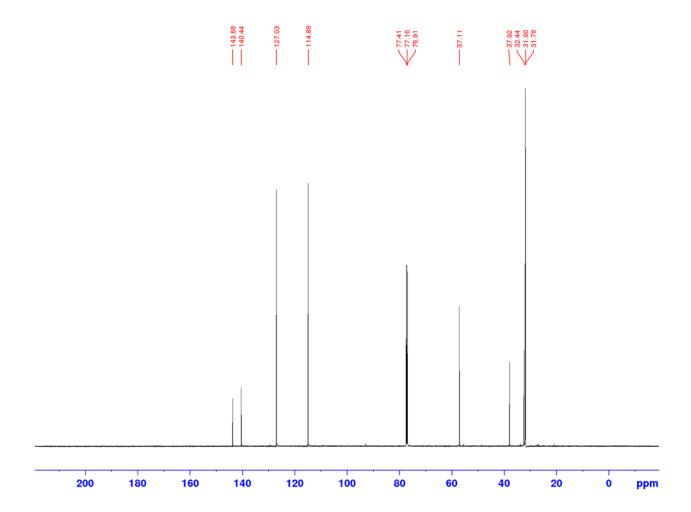


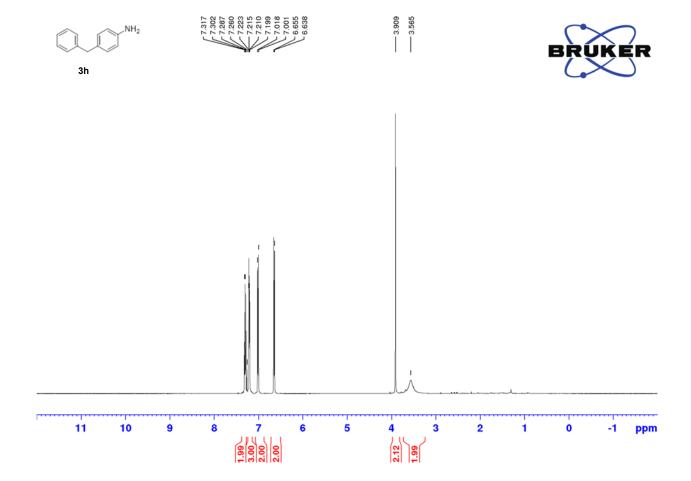


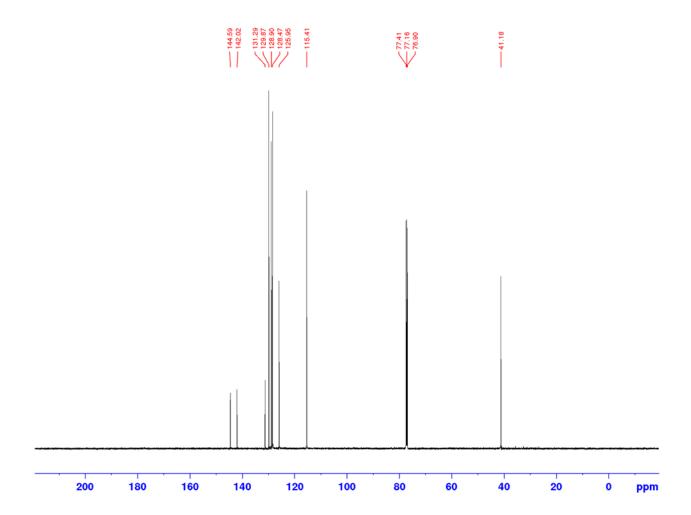


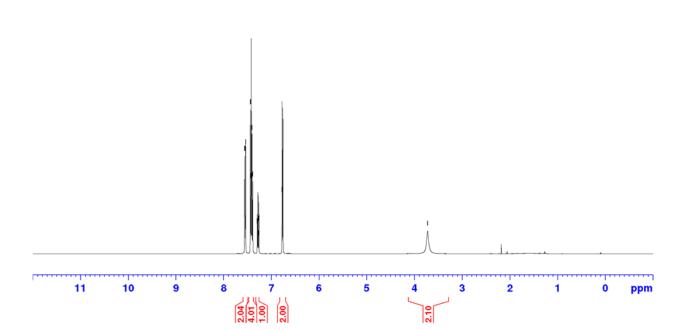


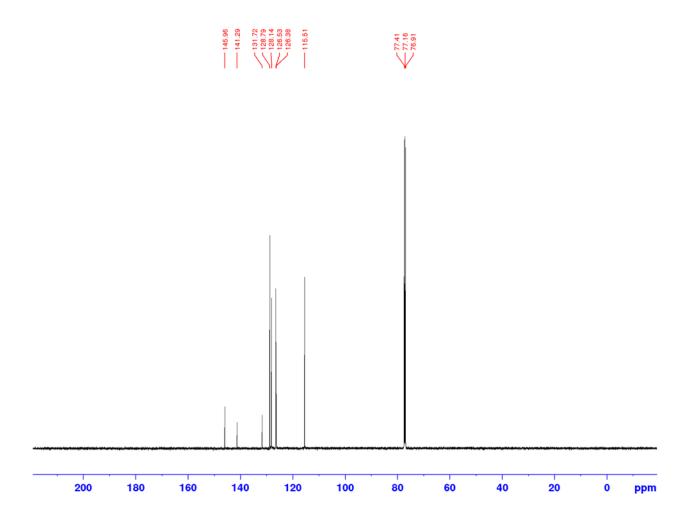


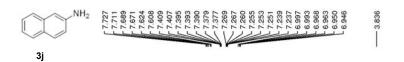




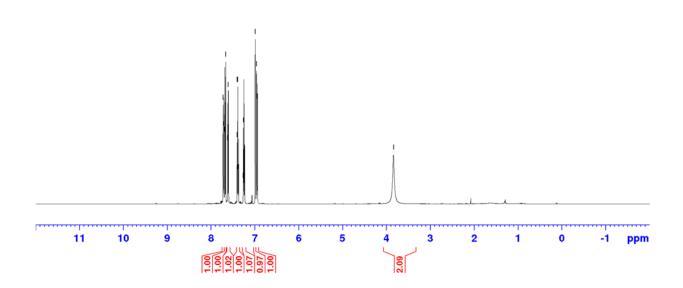


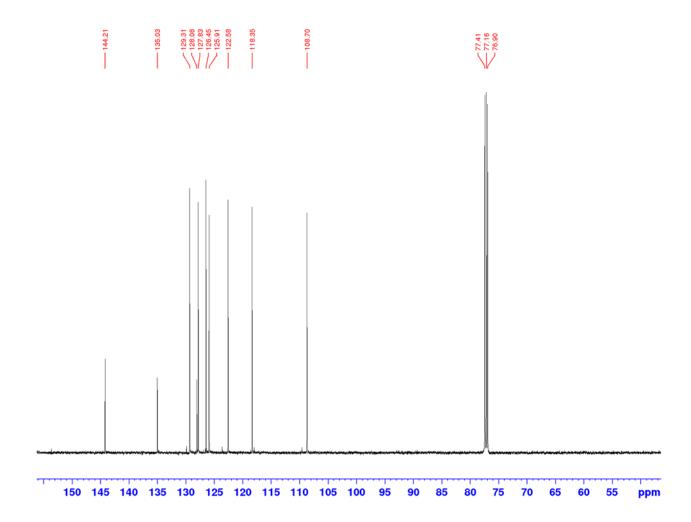


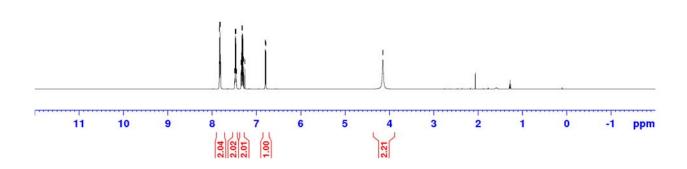


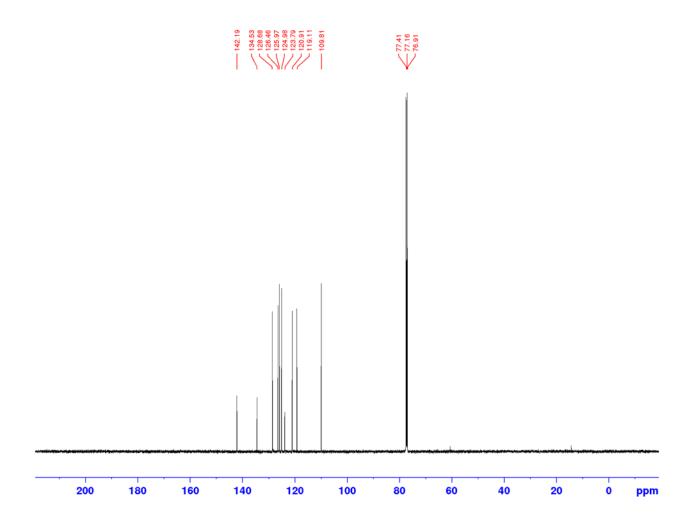


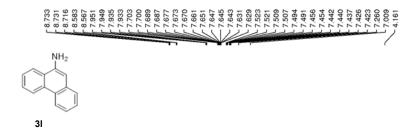
3.725

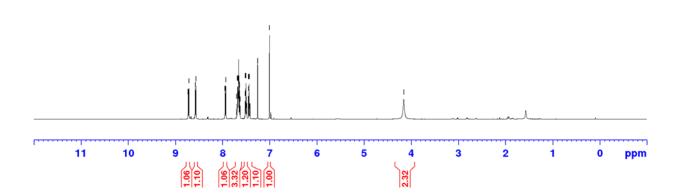


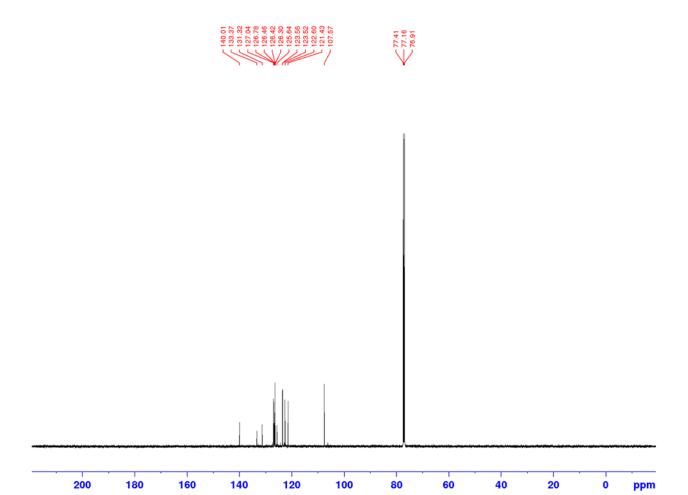


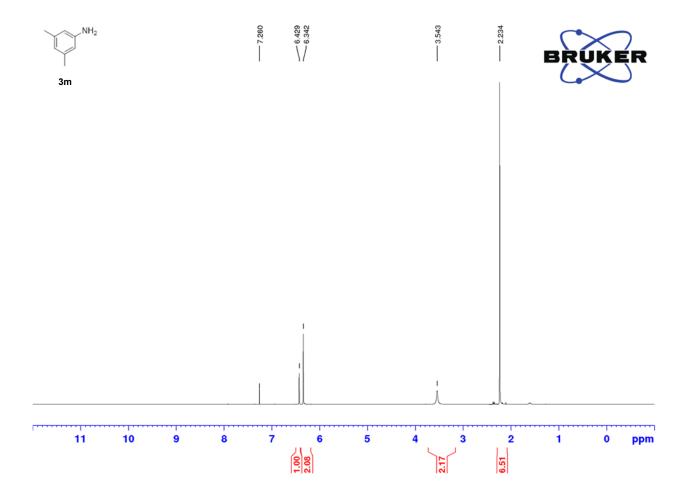


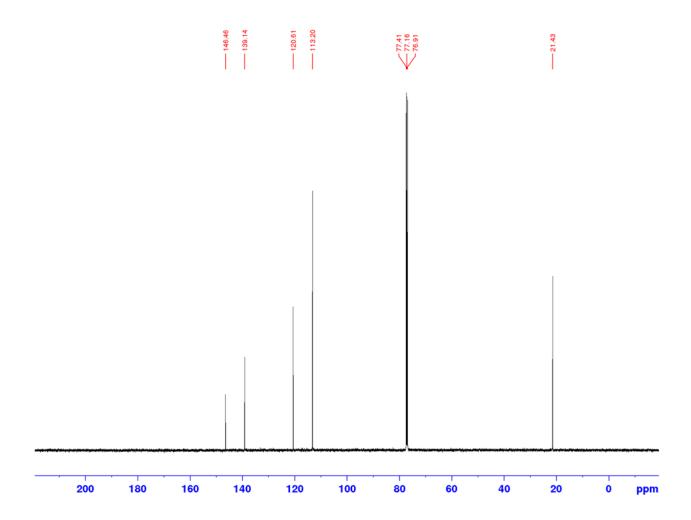


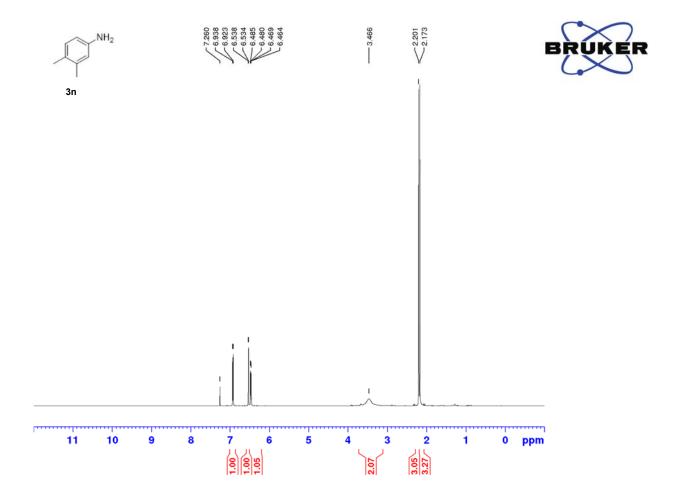


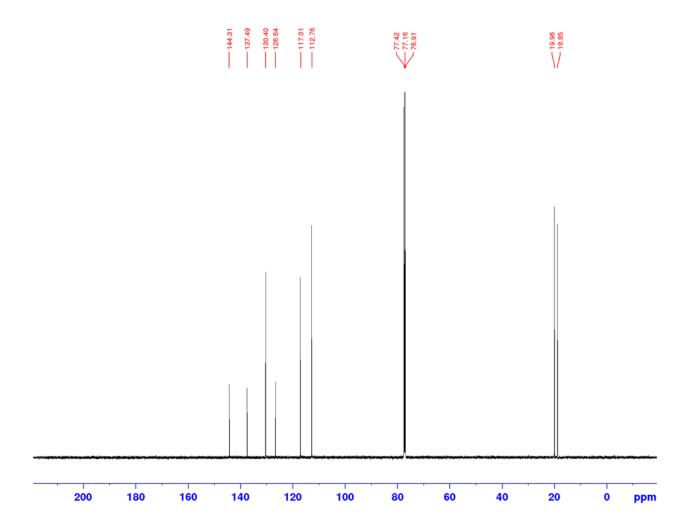


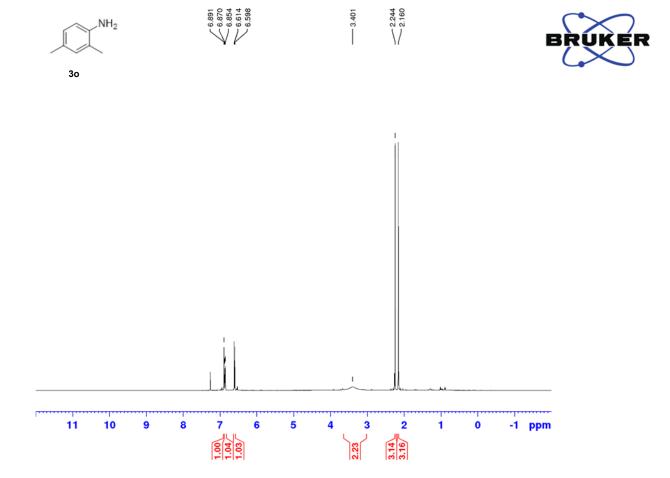


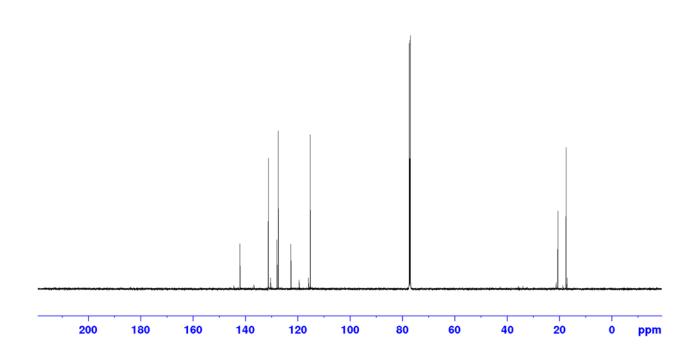


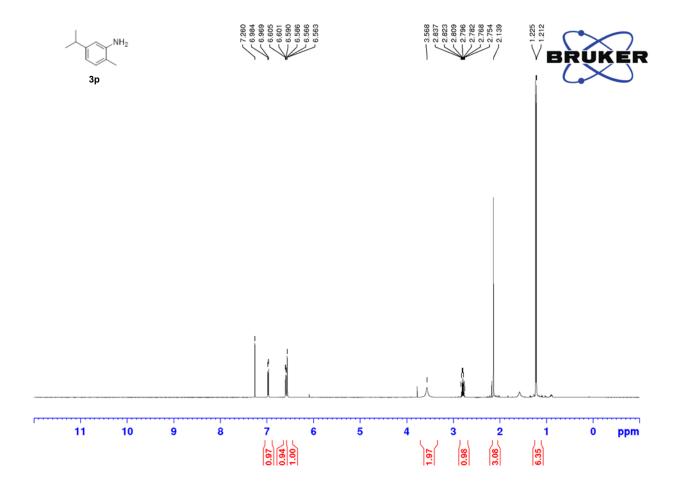


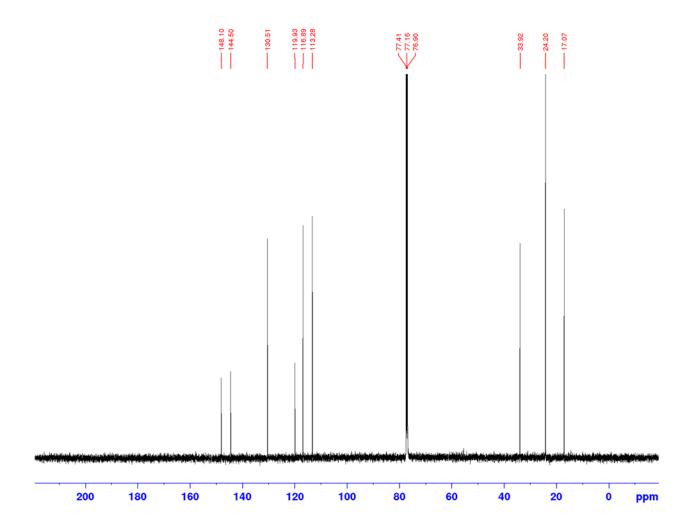


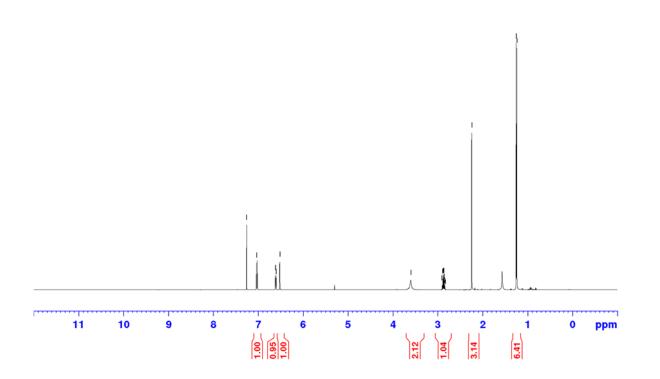


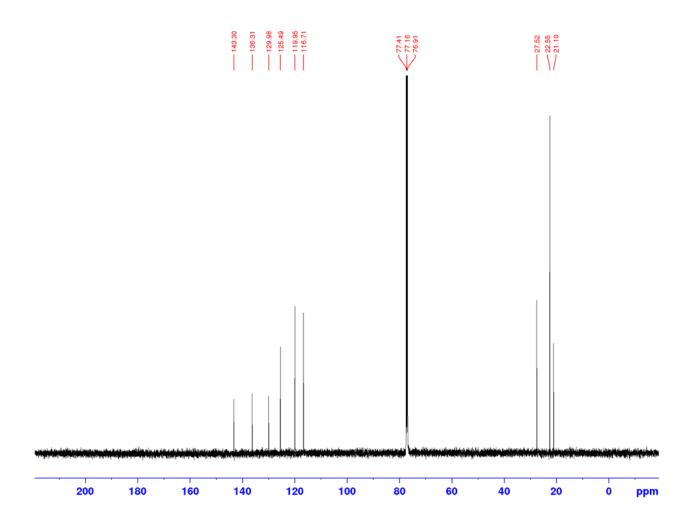


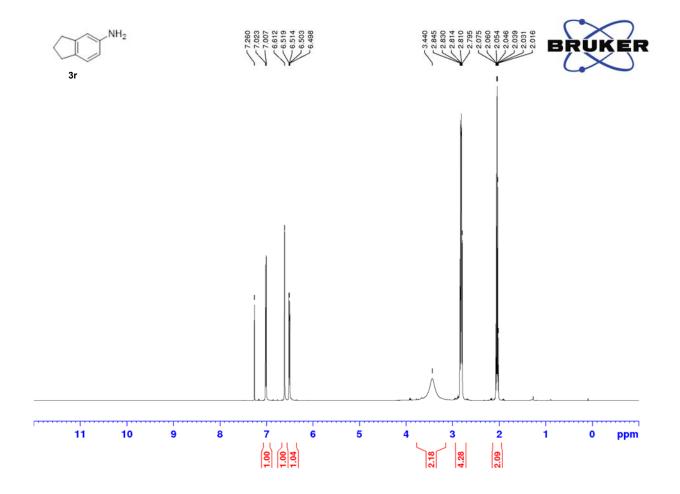


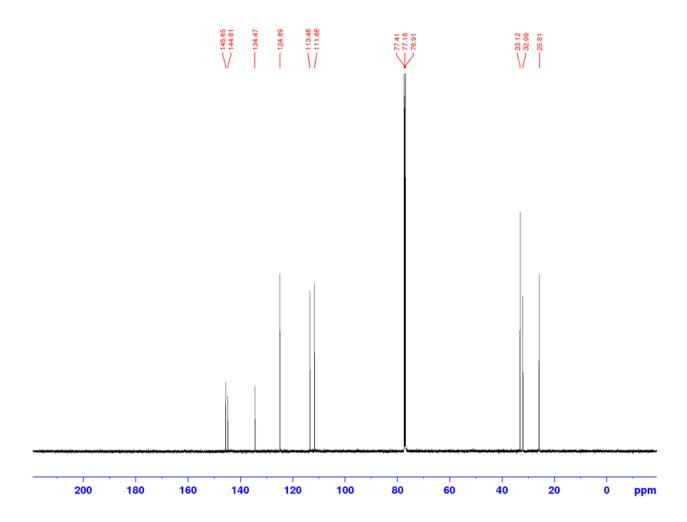


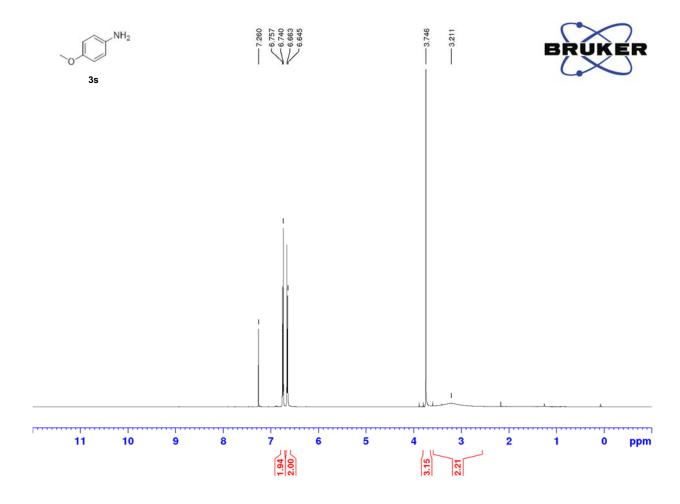


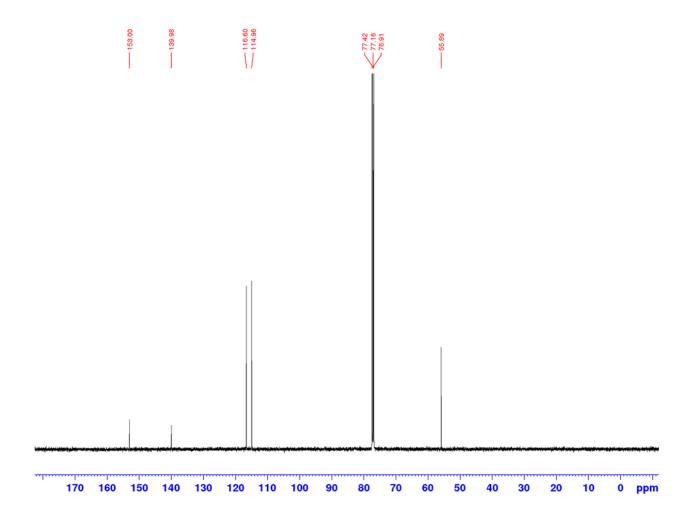


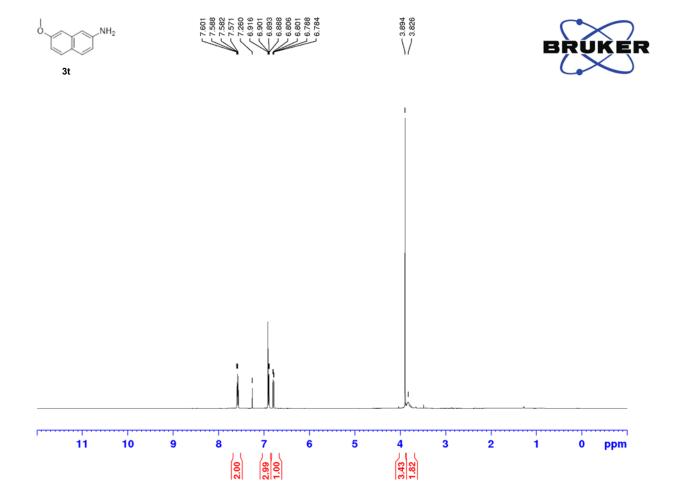


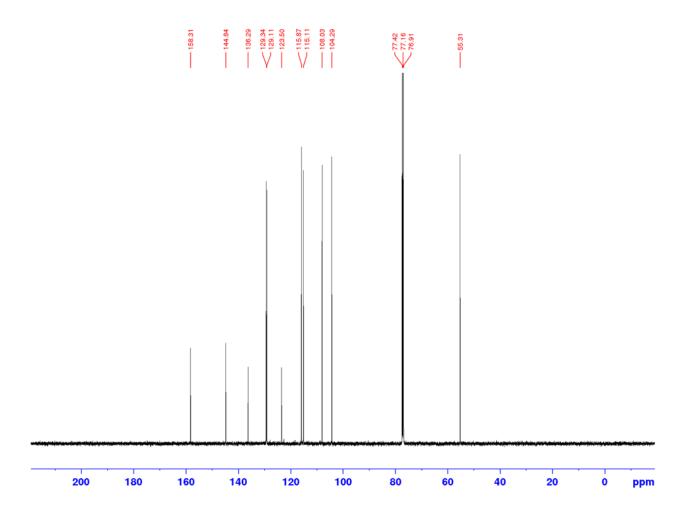


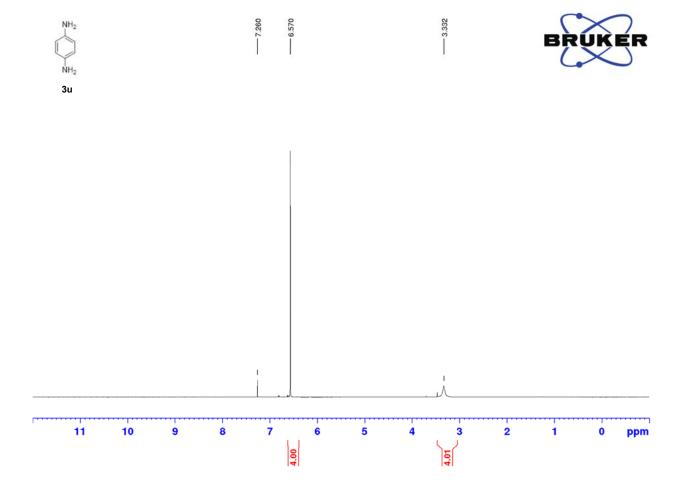


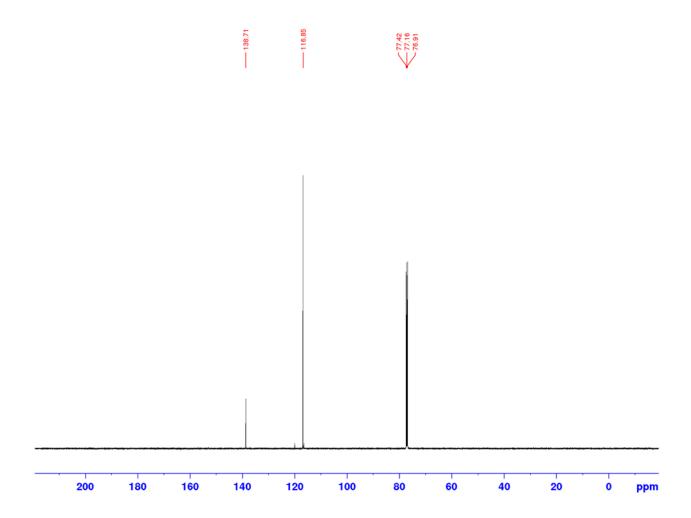


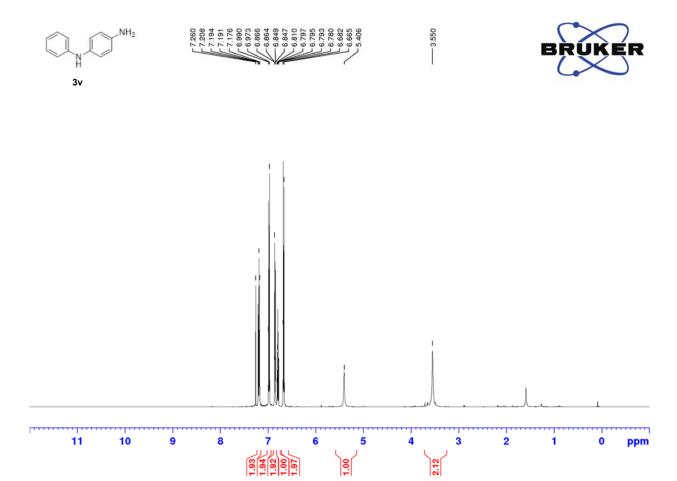


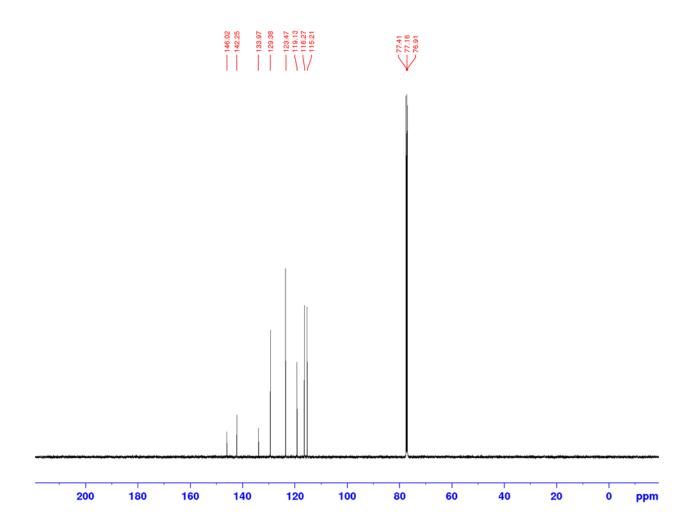


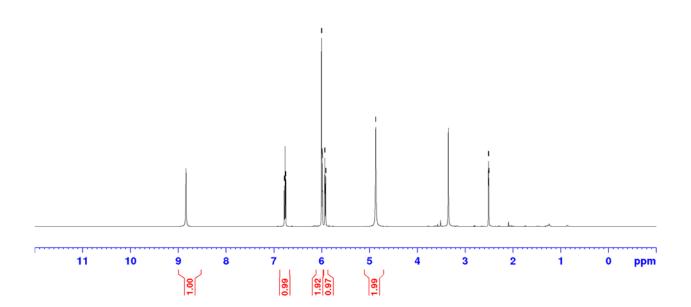


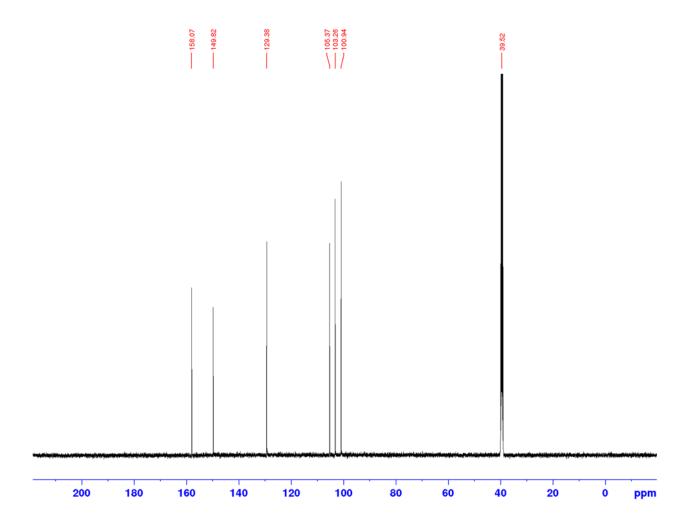


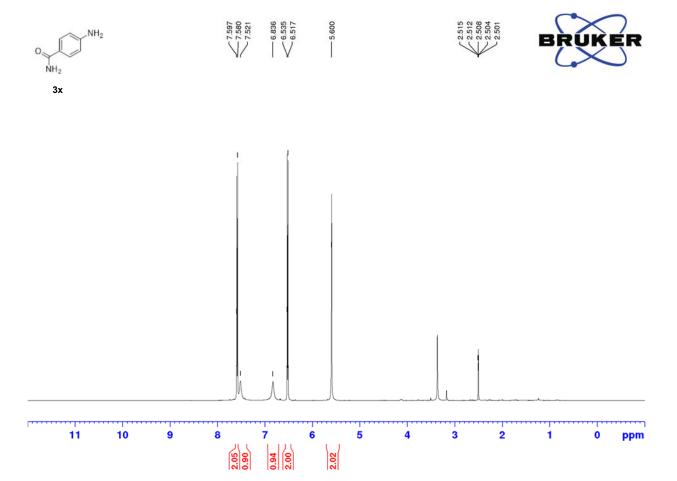


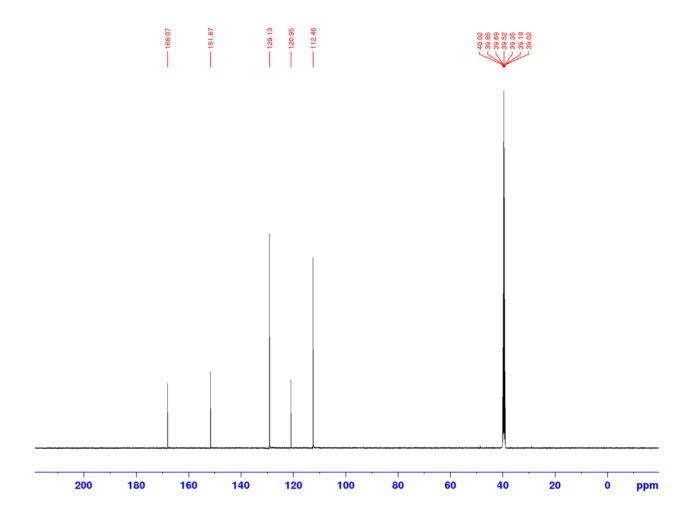


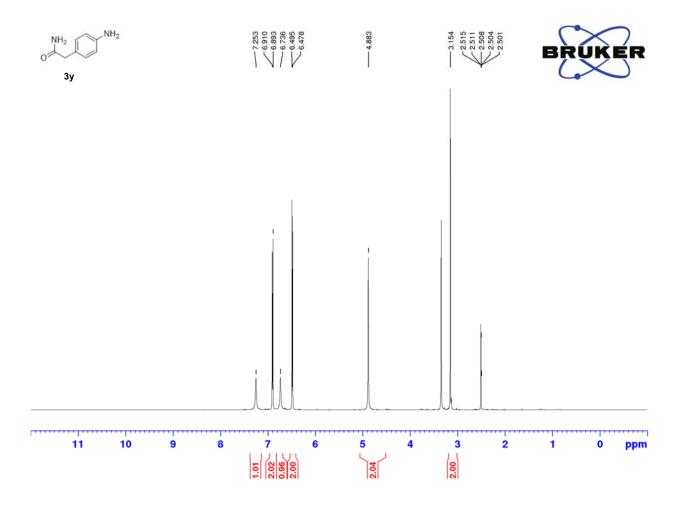


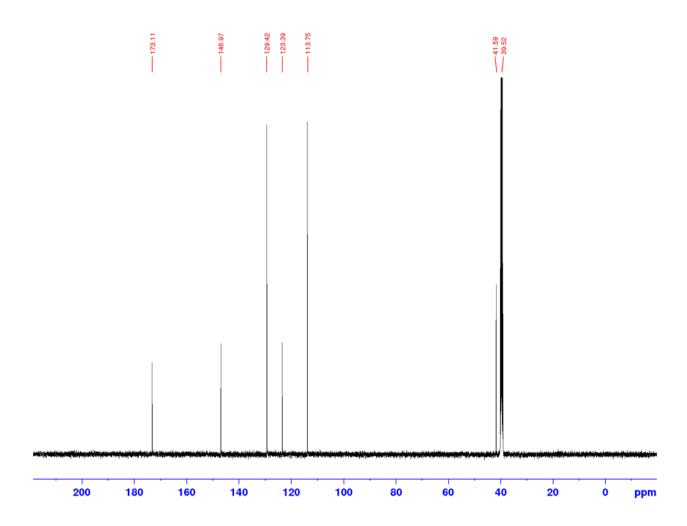


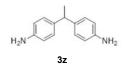


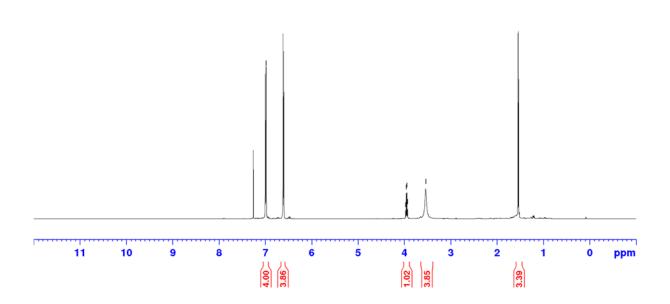


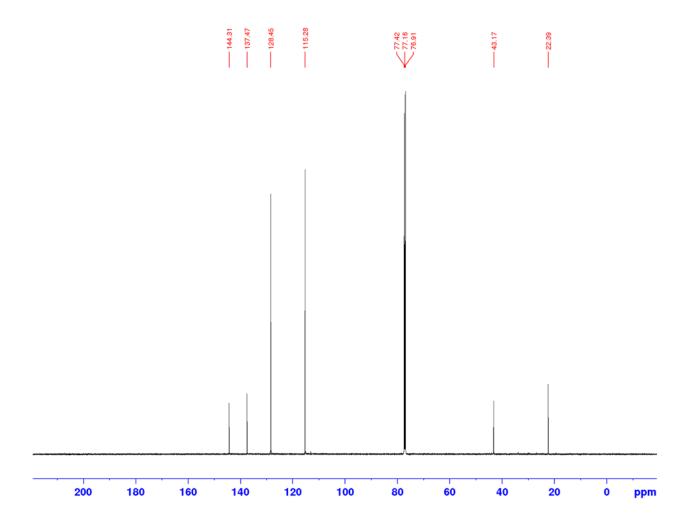


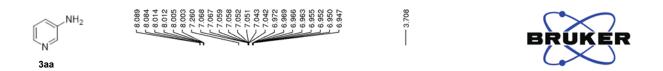


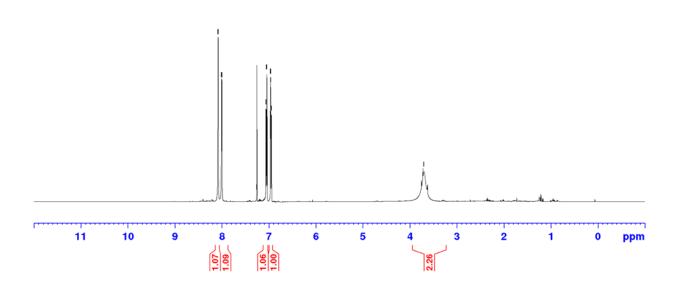


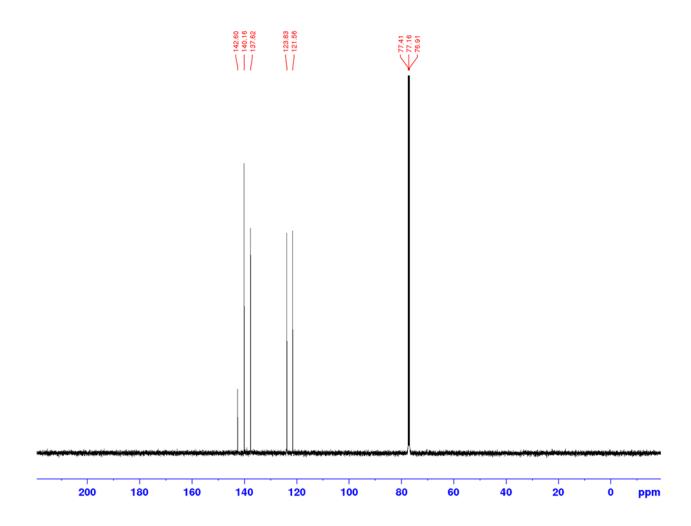


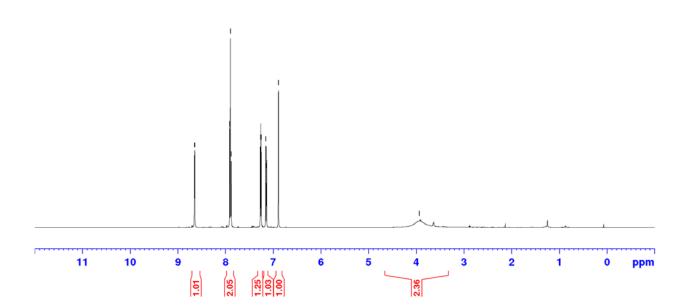


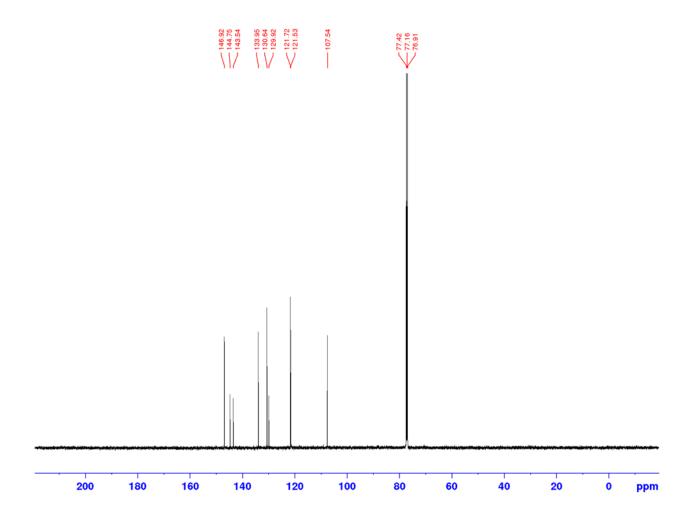


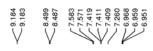


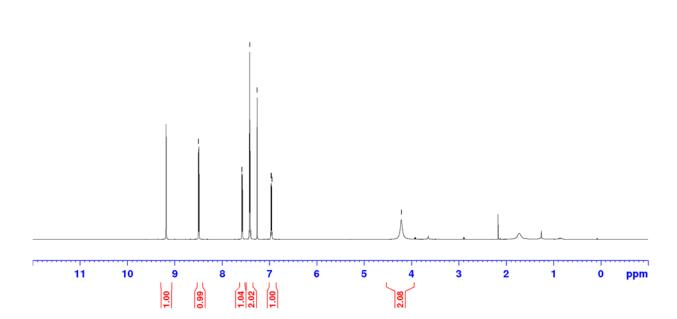


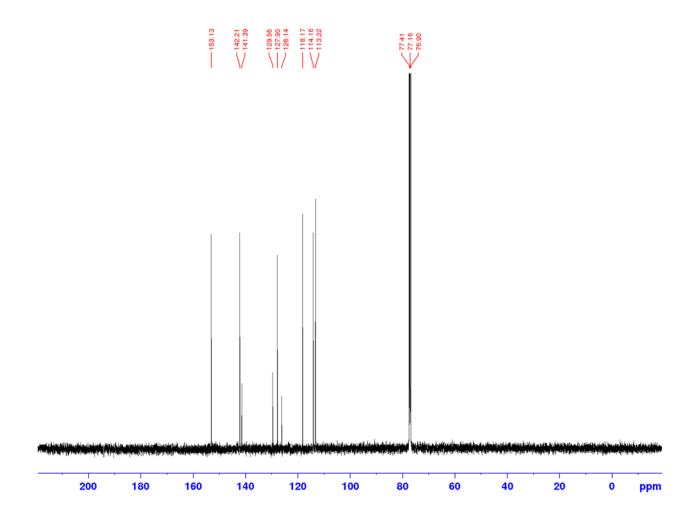


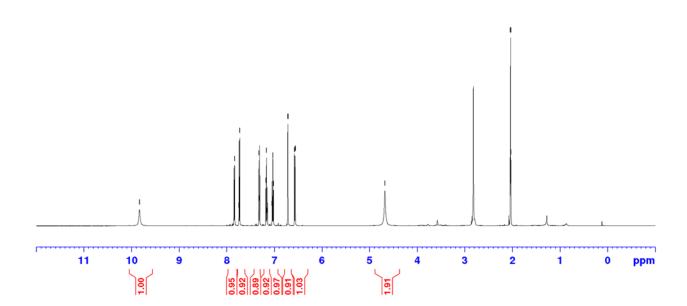


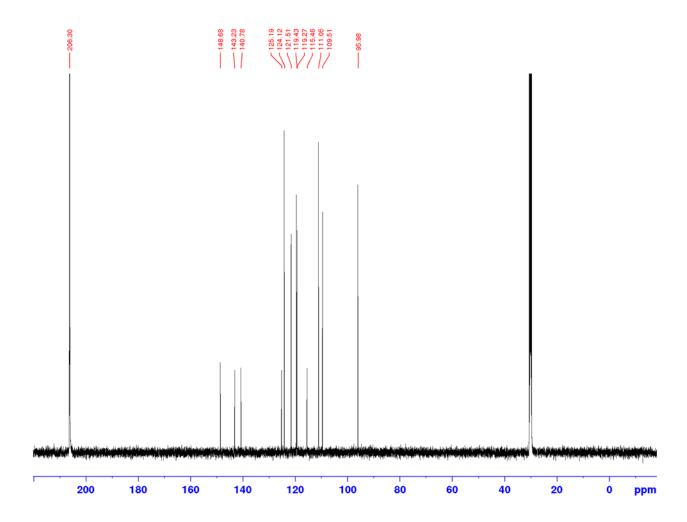


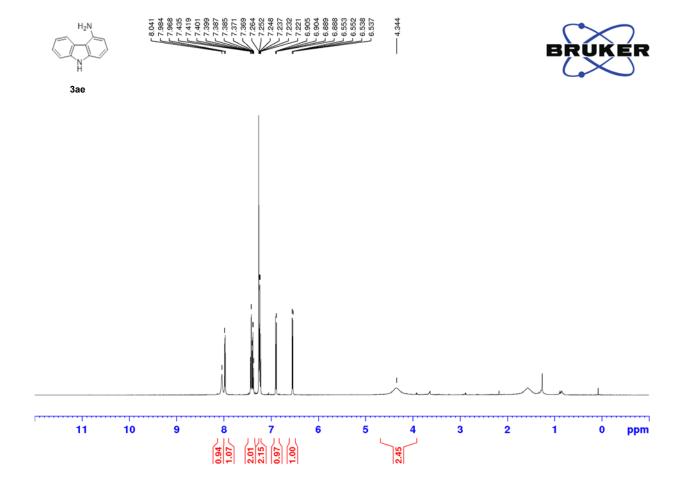


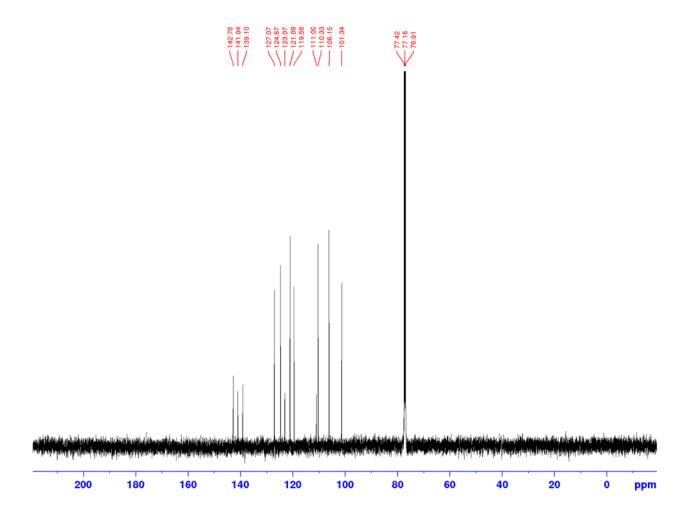


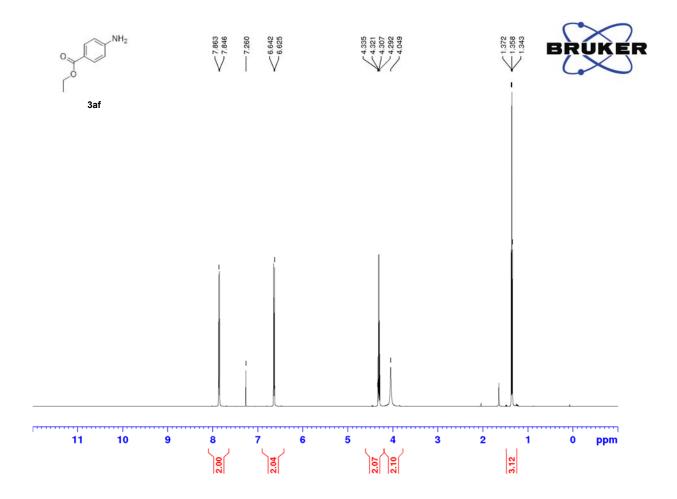

Зас

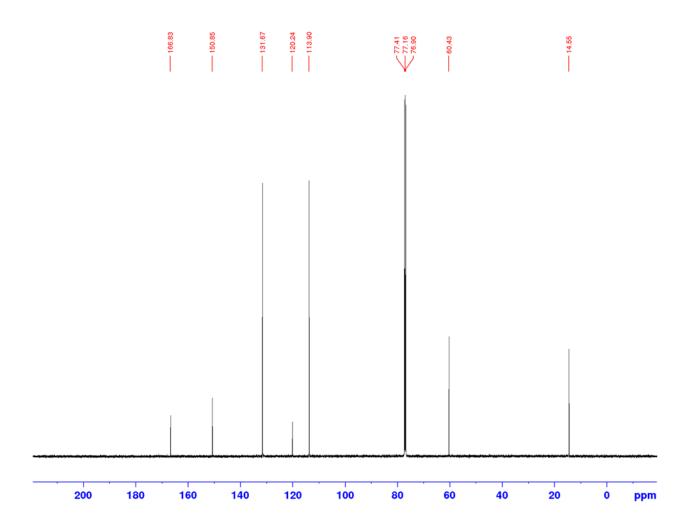

0.99

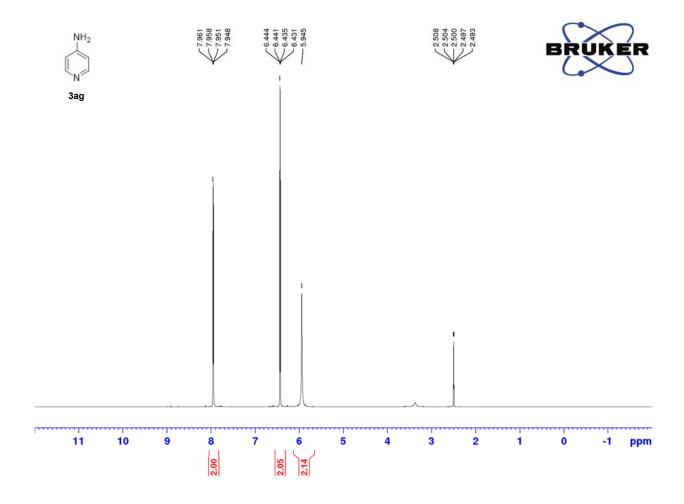


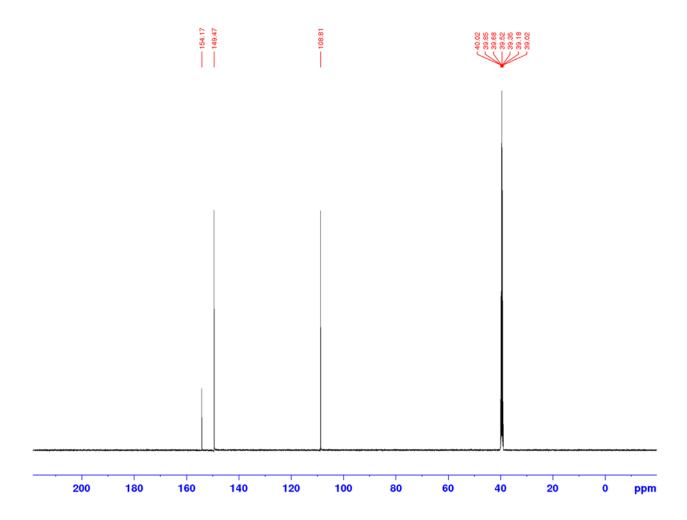


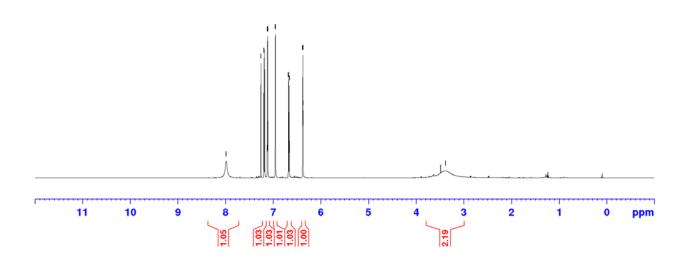


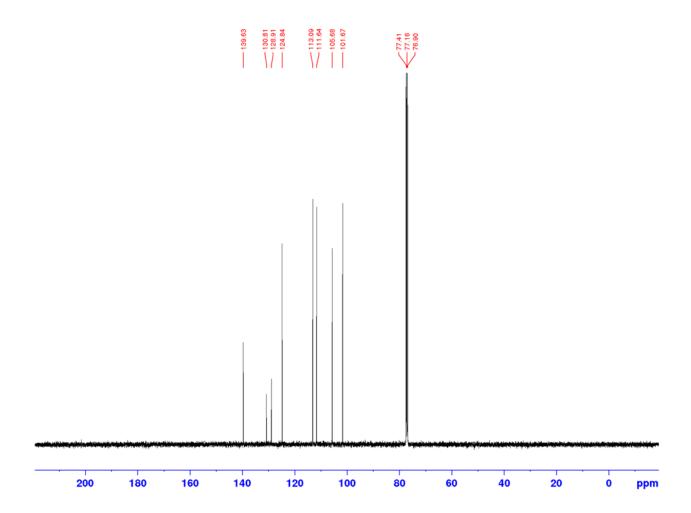


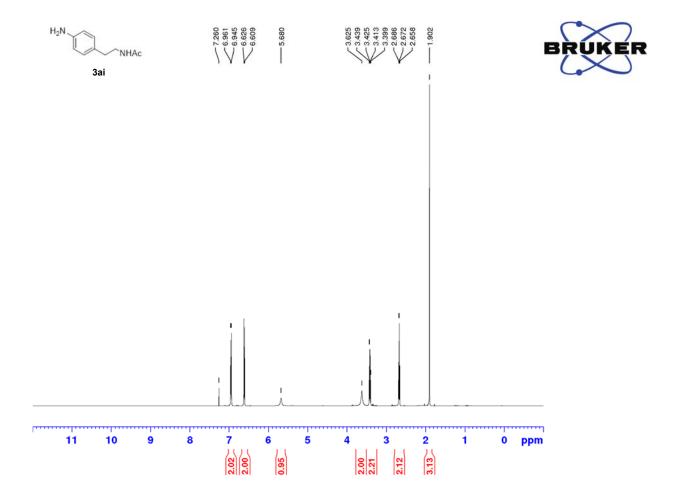


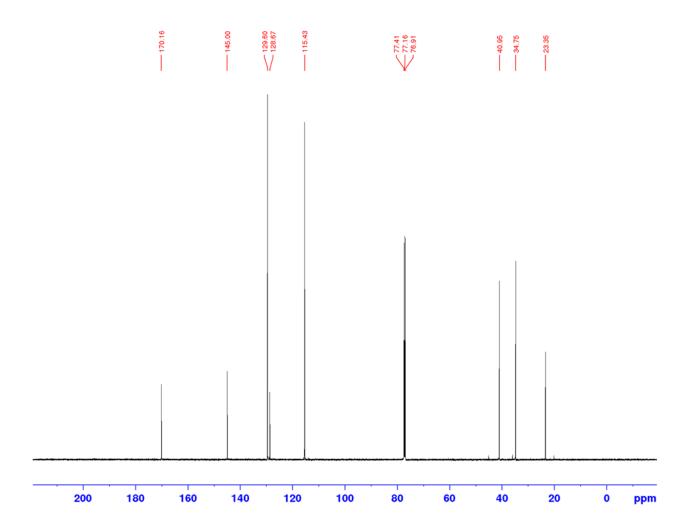


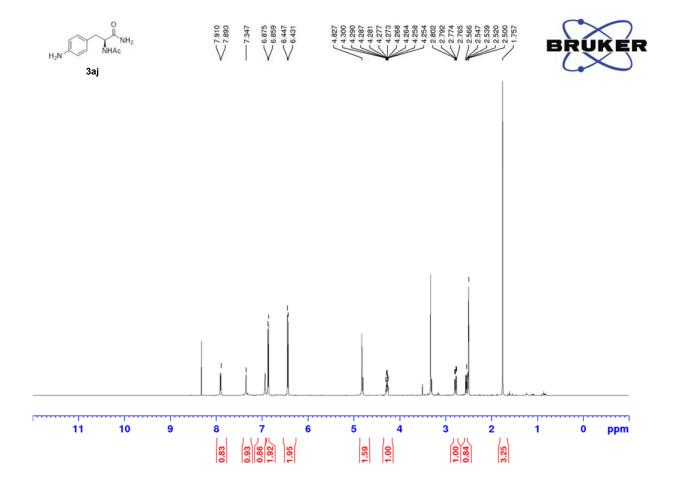









BRUKE


3ah

